Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14797, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926407

RESUMO

Detecting aberrant cell-free DNA (cfDNA) methylation is a promising strategy for lung cancer diagnosis. In this study, our aim is to identify methylation markers to distinguish patients with lung cancer from healthy individuals. Additionally, we sought to develop a deep learning model incorporating cfDNA methylation and fragment size profiles. To achieve this, we utilized methylation data collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Then we generated methylated DNA immunoprecipitation sequencing and genome-wide Enzymatic Methyl-seq (EM-seq) form lung cancer tissue and plasma. Using these data, we selected 366 methylation markers. A targeted EM-seq panel was designed using the selected markers, and 142 lung cancer and 56 healthy samples were produced with the panel. Additionally, cfDNA samples from healthy individuals and lung cancer patients were diluted to evaluate sensitivity. Its lung cancer detection performance reached an accuracy of 81.5% and an area under the receiver operating characteristic curve of 0.87. In the serial dilution experiment, we achieved tumor fraction detection of 1% at 98% specificity and 0.1% at 80% specificity. In conclusion, we successfully developed and validated a combination of methylation panel and a deep learning model that can distinguish between patients with lung cancer and healthy individuals.


Assuntos
Biomarcadores Tumorais , Metilação de DNA , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Curva ROC
2.
Mol Cells ; 43(12): 975-988, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33273139

RESUMO

Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1AAS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxiainducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxiainduced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , Regulação para Cima/genética , Uroplaquina Ia/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metilação , Estabilidade de RNA/genética , RNA Antissenso/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Ribonucleases/metabolismo
3.
Cell Mol Biol Lett ; 24: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061665

RESUMO

BACKGROUND: Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor with a pivotal role in physiological and pathological responses to hypoxia. While HIF-1α is known to be involved in hypoxia-induced upregulation of microRNA (miRNA) expression, HIF-1α is also targeted by miRNAs. In this study, miRNAs targeting HIF-1α were identified and their effects on its expression and downstream target genes under hypoxic conditions were investigated. Cell migration under the same conditions was also assessed. METHODS: microRNAs that target HIF-1α were screened using 3'-untranslated region luciferase (3'-UTR-luciferase) reporter assays. The expression levels of HIF-1α and its downstream target genes after transfection with miRNA were assessed using quantitative RT-PCR and western blot analyses. The effect of the miRNAs on the transcriptional activity of HIF-1α was determined using hypoxia-responsive element luciferase (HRE-luciferase) assays. Cell migration under hypoxia was examined using the wound-healing assay. RESULTS: Several of the 19 screened miRNAs considerably decreased the luciferase activity. Transfection with miR-200c had substantial impact on the expression level and transcription activity of HIF-1α. The mRNA level of HIF-1α downstream genes decreased in response to miR-200c overexpression. MiR-200c inhibited cell migration in normoxia and, to a greater extent, in hypoxia. These effects were partly reversed by HIF-1α expression under hypoxic conditions. CONCLUSION: miR-200c negatively affects hypoxia-induced responses by downregulating HIF-1α, a key regulator of hypoxia. Therefore, overexpression of miR-200c might have therapeutic potential as an anticancer agent that inhibits tumor hypoxia.


Assuntos
Movimento Celular/genética , Regulação para Baixo/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Hipóxia Celular/genética , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Luciferases/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Cicatrização
4.
Exp Cell Res ; 339(2): 320-32, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26485640

RESUMO

Micro(mi)RNAs play important and varied roles in tumorigenesis; however, the full repertoire of miRNAs that affect cancer cell growth is not known. In this study, an miRNA library was screened to identify those that affect the growth of A549 tumor cells. Among 300 miRNAs, miR-28-5p, -323-5p, -510-5p, -552-3p, and -608 were the most effective in inhibiting cell growth. More specifically, overexpressing miR-28-5p, -323-5p, and -510-5p induced G1 arrest, as determined by flow cytometry, whereas that of miR-608 induced cell death in a caspase-dependent manner. Moreover, several genes involved in apoptosis and cell cycle progression were downregulated upon overexpression of each of the five miRNAs, with the functional targets of miR-552-3p and miR-608 confirmed by microarray, quantitative real-time PCR, and luciferase reporter assay. In miR-608-transfected cells, B cell lymphoma 2-like 1 (BCL2L1), D-type cyclin 1 (CCND1), CCND3, cytochrome b5 reductase 3 (CYB5R3), phosphoinositide 3-kinase regulatory subunit 2 (PIK3R2), specificity protein 1 (SP1), and phosphorylated Akt were all downregulated, while Bcl-2-interacting killer (BIK) was upregulated. Moreover, miR-608 was determined to have a suppressive function on tumor growth in an NCI-H460 xenograft model. These findings provide insights into the roles of five miRNAs in growth inhibition and their potential function as cancer therapeutics.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Biblioteca Gênica , MicroRNAs/análise , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...