Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34685486

RESUMO

Monitoring the development of resistance to the tyrosine kinase inhibitor (TKI) imatinib in chronic myeloid leukemia (CML) patients in the initial chronic phase (CP) is crucial for limiting the progression of unresponsive patients to terminal phase of blast crisis (BC). This study for the first time demonstrates the potential of Raman spectroscopy to sense the resistant phenotype. Currently recommended resistance screening strategy include detection of BCR-ABL1 transcripts, kinase domain mutations, complex chromosomal abnormalities and BCR-ABL1 gene amplification. The techniques used for these tests are expensive, technologically demanding and have limited availability in resource-poor countries. In India, this could be a reason for more patients reporting to clinics with advanced disease. A single method which can identify resistant cells irrespective of the underlying mechanism would be a practical screening strategy. During our analysis of imatinib-sensitive and -resistant K562 cells, by array comparative genomic hybridization (aCGH), copy number variations specific to resistant cells were detected. aCGH is technologically demanding, expensive and therefore not suitable to serve as a single economic test. We therefore explored whether DNA finger-print analysis of Raman hyperspectral data could capture these alterations in the genome, and demonstrated that it could indeed segregate imatinib-sensitive and -resistant cells. Raman spectroscopy, due to availability of portable instruments, ease of spectrum acquisition and possibility of centralized analysis of transmitted data, qualifies as a preliminary screening tool in resource-poor countries for imatinib resistance in CML. This study provides a proof of principle for a single assay for monitoring resistance to imatinib, available for scrutiny in clinics.


Assuntos
Variações do Número de Cópias de DNA/genética , Impressões Digitais de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Mesilato de Imatinib/farmacologia , Hibridização Genômica Comparativa/métodos , Impressões Digitais de DNA/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células K562 , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia
2.
Analyst ; 143(8): 1916-1923, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29620771

RESUMO

Meningiomas represent one of the most frequently reported non-glial, primary brain and central nervous system (CNS) tumors. Meningiomas often display a spectrum of anomalous locations and morphological attributes, deterring their timely diagnosis. Majority of them are sporadic in nature and thus the present-day screening strategies, including radiological investigations, often result in misdiagnosis due to their aberrant and equivocal radiological facets. Therefore, it is pertinent to explore less invasive and patient-friendly biofluids such as serum for their screening and diagnostics. The utility of serum Raman spectroscopy in diagnosis and therapeutic monitoring of cancers has been reported in the literature. In the present study, for the first time, to the best of our knowledge, we have explored Raman spectroscopy to classify the sera of meningioma and control subjects. For this exploration, 35 samples each of meningioma and control subjects were accrued and the spectra revealed variance in the levels of DNA, proteins, lipids, amino acids and ß-carotene, i.e., a relatively higher protein, DNA and lipid content in meningioma. Subsequent Principal Component Analysis (PCA) and Principal Component-Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) and limited independent test data, in a patient-wise approach, yielded a classification efficiency of 92% and 80% for healthy and meningioma, respectively. Additionally, in the analogous analysis between healthy and different grades of meningioma, similar results were obtained. These results indicate the potential of Raman spectroscopy in differentiating meningioma. As present methods suffer from known limitations, with the prospective validation on a larger cohort, serum Raman spectroscopy could be an adjuvant/alternative approach in the clinical management of meningioma.


Assuntos
Neoplasias Meníngeas/diagnóstico , Meningioma/diagnóstico , Análise Espectral Raman , Análise Discriminante , Humanos , Neoplasias Meníngeas/sangue , Meningioma/sangue , Análise de Componente Principal
3.
Lasers Med Sci ; 31(1): 95-111, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552923

RESUMO

Raman spectroscopy which is based upon inelastic scattering of photons has a potential to emerge as a noninvasive bedside in vivo or ex vivo molecular diagnostic tool. There is a need to improve the sensitivity and predictability of Raman spectroscopy. We developed a grid matrix-based tissue mapping protocol to acquire cellular-specific spectra that also involved digital microscopy for localizing malignant and lymphocytic cells in sentinel lymph node biopsy sample. Biosignals acquired from specific cellular milieu were subjected to an advanced supervised analytical method, i.e., cross-correlation and peak-to-peak ratio in addition to PCA and PC-LDA. We observed decreased spectral intensity as well as shift in the spectral peaks of amides and lipid bands in the completely metastatic (cancer cells) lymph nodes with high cellular density. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to create an automated smart diagnostic tool for bench side screening of sampled lymph nodes. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to develop an automated smart diagnostic tool for bench side screening of sampled lymph nodes supported by ongoing global research in developing better technology and signal and big data processing algorithms.


Assuntos
Neoplasias da Mama/patologia , Biópsia de Linfonodo Sentinela , Análise Espectral Raman/métodos , Algoritmos , Axila , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Metástase Linfática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...