Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998124

RESUMO

Comprehending the immune defense mechanisms of new aquaculture species, such as the Chilean meagre (Cilus gilberti), is essential for sustaining large-scale production. Two bioassays were conducted to assess the impact of acute and intermittent hypoxia on the antibacterial activity of juvenile Chilean meagre epidermal mucus against the potential pathogens Vibrio anguillarum and Vibrio ordalii. Lysozyme and peroxidase activities were also measured. In general, fish exposed to hypoxia showed a 9-30% reduction in mucus antibacterial activity at the end of hypoxic periods and after stimulation with lipopolysaccharide. However, following water reoxygenation, the activity of non-stimulated fish was comparable to that of fish in normoxic conditions, inhibiting bacterial growth by 35-52%. In the case of fish exposed to chronic hypoxia, the response against V. anguillarum increased by an additional 19.8% after 6 days of control inoculation. Lysozyme exhibited a similar pattern, while no modulation of peroxidase activity was detected post-hypoxia. These results highlight the resilience of C. gilberti to dissolved oxygen fluctuations and contribute to understanding the potential of mucus in maintaining the health of cultured fish and the development of future control strategies.

2.
Animals (Basel) ; 13(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37106979

RESUMO

Massive mortalities in farmed larvae of the scallop Argopecten purpuratus have been associated with pathogenic Vibrio outbreaks. An energetic trade-off between development-associated demands and immune capacity has been observed. Given that highly unsaturated fatty acids (HUFAs) are essential nutrients for larval development, we evaluated the effect of diets based on microalgae low and high in HUFAs (LH and HH, respectively) on the energetic condition and the immune response of scallop larvae. The results showed that the HH diet increased cellular membrane fluidity in veliger larvae. The routine respiration rate was 64% higher in the HH-fed veligers than in the LH-fed veligers. Additionally, the metabolic capacity tended to be higher in the HH-fed veligers than in the LH-fed veligers after the Vibrio challenge. After the challenge, the HH-fed veligers presented higher transcript induction of ApTLR (immune receptor) and ApGlys (immune effector) genes, and the HH-fed pediveligers presented higher induction of ApLBP/BPI1 (antimicrobial immune effector) gene, than the LH-fed larvae. Furthermore, the HH-fed veligers controlled total Vibrio proliferation (maintaining near basal levels) after the bacterial challenge, while the LH-fed veligers were not able to control this proliferation, which increased three-fold. Finally, the HH-fed larvae showed 20-25% higher growth and survival rates than the LH-fed veligers. Overall, the results indicated that the administration of a HH diet increases cell membrane fluidity and energy metabolic capacity, which in turn enhances immunity and the ability to control Vibrio proliferation. The administration of microalgae high in HUFAs would be a promising strategy for improving scallop larval production efficiency.

3.
Animals (Basel) ; 12(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35565600

RESUMO

A variety of long-term stress conditions may exist in fish cultivation, some of which are so severe that fish can no longer reestablish homeostasis. In teleost fish, the brain and gastrointestinal tract integrate signals that include the perception of stress factors regulating physiological responses, such as social stress by fish population density, where peripheral and central signals, such as peptide hormones, are the main regulators. Therefore, we proposed in this study to analyze the effect of different stock densities (SD) in the gene expression of brain neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP), together with the gastrointestinal peptide hormones leptin (Lep), vasointestinal peptide (VIP), and protachykinin-1 (Prk-1) in Salmo salar post-smolt. The coding sequence of S. salar VIP and Prk-1 precursors were firstly cloned and characterized. Then, the mRNA expression of these genes, together with the NPY, Lep, and CGRP genes, were evaluated in post-smolts kept at 11 Kg/m3, 20 Kg/m3, and 40 Kg/m3. At 14 days of culture, the brain CGRP and liver leptin mRNA levels increased three and tenfold in the post-smolt salmons kept at the highest SD, respectively. The high levels of leptin were kept during all the fish culture experiments. In addition, the highest expression of intestine VIP mRNA was obtained on Day 21 in the group of 40 Kg/m3 returning to baseline on Day 40. In terms of stress biochemical parameters, cortisol levels were increased in the 20 Kg/m3 and 40 Kg/m3 groups on Day 40 and were the highest in the 20 Kg/m3 group on Day 14. This study provides new insight into the gastrointestinal signals that could be affected by chronic stress induced by high stock density in fish farming. Thus, the expression of these peptide hormones could be used as molecular markers to improve production practices in fish aquaculture.

4.
Front Physiol ; 12: 718467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539443

RESUMO

The scallop Argopecten purpuratus is an important resource for Chilean and Peruvian aquaculture. Seed availability from commercial hatcheries is critical due to recurrent massive mortalities associated with bacterial infections, especially during the veliger larval stage. The immune response plays a crucial role in counteracting the effects of such infections, but being energetically costly, it potentially competes with the physiological and morphological changes that occur during early development, which are equally expensive. Consequently, in this study, energy metabolism parameters at the individual and cellular levels, under routine-basal status and after the exposure to the pathogenic strain bacteria (Vibrio splendidus VPAP18), were evaluated during early ontogeny (trochophore, D-veliger, veliger, pediveliger, and early juveniles) of A. purpuratus. The parameters measured were as follows: (1) metabolic demand, determined as oxygen consumption rate and (2) ATP supplying capacity measured by key mitochondrial enzymes activities [citrate synthase (CS), electron transport system (ETS), and ETS/CS ratio, indicative of ATP supplying efficiency], mitochondrial membrane potential (ΔΨm), and mitochondrial density (ρ m) using an in vivo image analysis. Data revealed that metabolic demand/capacity varies significantly throughout early development, with trochophores being the most efficient in terms of energy supplying capacity under basal conditions. ATP supplying efficiency decreased linearly with larval development, attaining its lowest level at the pediveliger stage, and increasing markedly in early juveniles. Veliger larvae at basal conditions were inefficient in terms of energy production vs. energy demand (with low ρ m, ΔΨm, enzyme activities, and ETS:CS). Post-challenged results suggest that both trochophore and D-veliger would have the necessary energy to support the immune response. However, due to an immature immune system, the immunity of these stages would rely mainly on molecules of parental origin, as suggested by previous studies. On the other hand, post-challenged veliger maintained their metabolic demand but decreased their ATP supplying capacity, whereas pediveliger increased CS activity. Overall, results suggest that veliger larvae exhibit the lowest metabolic capacity to overcome a bacterial challenge, coinciding with previous works, showing a reduced capacity to express immune-related genes. This would result in a higher susceptibility to pathogen infection, potentially explaining the higher mortality rates occurring during A. purpuratus farming.

5.
Fish Shellfish Immunol ; 82: 279-285, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30125708

RESUMO

Ferritins are ubiquitous proteins with a pivotal role in iron storage and homeostasis, and in host defense responses during infection by pathogens in several organisms, including mollusks. In this study, we characterized two ferritin homologues in the red abalone Haliotis rufescens, a species of economic importance for Chile, USA and Mexico. Two ferritin subunits (Hrfer1 and Hrfer2) were cloned. Hrfer1 cDNA is an 807 bp clone containing a 516 bp open reading frame (ORF) that corresponds to a novel ferritin subunit in H. rufescens. Hrfer2 cDNA is an 868 bp clone containing a 516 bp ORF that corresponds to a previously reported ferritin subunit, but in this study 5'- and 3'-UTR sequences were additionally found. We detected a putative Iron Responsive Element (IRE) in the 5'-UTR sequence, suggesting a posttranscriptional regulation of Hrfer2 translation by iron. The deduced protein sequences of both cDNAs possessed the motifs and domains required in functional ferritin subunits. Expression patterns of both ferritins in different tissues, during different developmental stages, and in response to bacterial (Vibrio splendidus) exposure were examined. Both Hrfer1 and Hrfer2 are most expressed in digestive gland and gonad. Hrfer1 mRNA levels increased about 34-fold along with larval developmental process, attaining the highest level in the creeping post-larvae. Exogenous feeding is initiated at the creeping larva stage; thus, the increase of Hrfer1 may suggest and immunity-related role upon exposure to bacteria. Highest Hrfer2 expression levels were detected at trochophore stage; which may be related with early shell formation. Upon challenge with, the bacteria an early mild induction of Hrfer2 (2 h post-challenge), followed by a stronger induction of Hrfer1 at 15 h post-challenge, was observed in haemocytes from adult abalones. While maximal upregulation of both genes in the whole individual occurred at 24 h post-challenge, in juveniles. A significant increase in ferritin protein levels from 6 h to 24 h post-challenge was also detected. Our results suggest an involvement of Hrfer1 and Hrfer2, and of ferritin proteins in the immune response of H. rufescens to bacterial infection.


Assuntos
Ferritinas/genética , Ferritinas/imunologia , Gastrópodes/genética , Gastrópodes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Ferritinas/química , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Vibrio/fisiologia
6.
Fish Shellfish Immunol ; 68: 173-179, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28690141

RESUMO

Big defensins are antimicrobial peptides (AMPs) that are proposed as important effectors of the immune response in mollusks, chelicerates and chordates. At present, only two members of the big defensin family have been identified in scallop. In the present work, a cDNA sequence encoding a new big defensin homologue was characterized from the scallop Argopecten purpuratus, namely ApBD1. ApBD1 cDNA sequence comprised 585 nucleotides, with an open reading frame of 375 bp and 5'- and 3'-UTRs of 41 and 167 bp, respectively. The deduced protein sequence contains 124 amino acids with a molecular weight of 13.5 kDa, showing characteristic motifs of the big defensin family and presenting 76% identity with the big defensin from the scallop A. irradians. Phylogenetic analysis revealed that ApBD1 is included into the cluster of big defensins from mollusks. Tissue-specific transcript expression analysis by RT-qPCR showed that ApBD1 was present in all tissues tested from non-immune challenged scallops but it was most strongly expressed in the mantle. The transcript levels of ApBD1 were significantly up-regulated in gills at 24 and 48 h post-injection with the heat-attenuated bacteria Vibrio splendidus. Additionally, immunofluorescence analysis using a polyclonal anti-ApBD1 antibody showed that this protein was abundantly located in epithelial linings of gills and mantle; and also in digestive gland showing ApBD1-infiltrating hemocytes from immune challenged scallops. This is the first time that a big defensin is detected and located at the protein level in a mollusk. These results suggest an important role of ApBD1 in the mucosal immune response of A. purpuratus.


Assuntos
Defensinas/genética , Defensinas/metabolismo , Pectinidae/genética , Pectinidae/microbiologia , Regulação para Cima , Vibrio/fisiologia , Animais , Anti-Infecciosos/metabolismo , Defensinas/isolamento & purificação , Imunidade nas Mucosas , Pectinidae/imunologia , Análise de Sequência de DNA , Regulação para Cima/imunologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-27040527

RESUMO

Ferritin is involved in several iron homoeostasis processes in molluscs. We characterized two ferritin homologues and their expression patterns in association with early development, growth rate and immune response in the scallop Argopecten purpuratus, a species of economic importance for Chile and Peru. Two ferritin subunits (Apfer1 and Apfer2) were cloned. Apfer1 cDNA is a 792bp clone containing a 516bp open reading frame (ORF) that corresponds to a novel ferritin subunit in A. purpuratus. Apfer2 cDNA is a 681bp clone containing a 522bp ORF that corresponds to a previously sequenced EST. A putative iron responsive element (IRE) was identified in the 5'-untranslated region of both genes. The deduced protein sequences of both cDNAs possessed the motifs and domains characteristic of functional ferritin subunits. Both genes showed differential expression patterns at tissue-specific and early development stage levels. Apfer1 expression level increased 40-fold along larval developmental stages, decreasing markedly after larval settlement. Apfer1 expression in mantle tissue was 2.8-fold higher in fast-growing than in slow-growing scallops. Apfer1 increased 8-fold in haemocytes 24h post-challenge with the bacterium Vibrio splendidus. Apfer2 expression did not differ between fast- and slow-growing scallops or in response to bacterial challenge. These results suggest that Apfer1 and Apfer2 may be involved in iron storage, larval development and shell formation. Apfer1 expression may additionally be involved in immune response against bacterial infections and also in growth; and thus would be a potential marker for immune capacity and for fast growth in A. purpuratus.


Assuntos
Ferritinas/genética , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Pectinidae/crescimento & desenvolvimento , Pectinidae/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Ferritinas/química , Ferritinas/metabolismo , Modelos Moleculares , Especificidade de Órgãos , Pectinidae/genética , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico
8.
Plant Signal Behav ; 3(10): 791-4, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19704559

RESUMO

Cytokinin receptors (CRs) are hybrid-type histidine kinases, membrane proteins with a cytokinin-binding extracellular domain. CRs initiate and propagate cytokinin signaling by means of phosphorylation and phosphotransfer to downstream proteins. In legumes, some members of the CR multigenic family are essential for nodulation. In two recent works, we investigated the involvement of two new CRs, MsHK1 from Medicago sativa, and LaHK1 from Lupinus albus, in nodule morphogenesis, senescence and stress response. LaHK1 expression increased during the first stages of lupin nodule development, while MsHK1 expression was localized in the meristem and the invasion zone of alfalfa nodules pointing to a role for CRs in nodule cell proliferation and differentiation. Both CRs were also induced during nodule senescence. MsHK1 expression increased under osmotic stress and both genes were induced following dark stress, indicating that CRs are also likely to play a significant role in the response to stress. We propose multiple roles for CRs which, when analyzed jointly with recent results from other authors, suggest coordinated cross-talk of different signaling systems.

9.
Plant Physiol Biochem ; 46(2): 219-25, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18060799

RESUMO

Here we report the isolation of a new cytokinin receptor homologue, LaHK1, from lupin (Lupinus albus) root nodules. LaHK1 transcript accumulation was detected in different plant organs, and expression was analyzed throughout nodule development. We observed notably higher expression in nodule primordia and young nodules compared to the root or to mature nodules. We also detected elevated transcript accumulation in naturally senescent nodules and in senescent nodules subjected to foliar dark stress. The results could be an indication of a putative role of this cytokinin receptor homologue in nodule development, from morphogenesis through senescence.


Assuntos
Citocininas/metabolismo , Lupinus/genética , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Nódulos Radiculares de Plantas/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Lupinus/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/fisiologia , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
10.
Planta ; 227(4): 769-79, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17985155

RESUMO

A new cytokinin receptor homologue, MsHK1, was isolated from Medicago sativa root nodules. MsHK1 expression was induced in alfalfa seedlings by exogenous application of the cytokinin trans-zeatin. Transcript accumulation was detected in different plant organs. MsHK1 expression was induced by salt stress in alfalfa roots, leaves and nodules, and transcript accumulation in the vascular bundles pointed to a putative role in osmosensing for MsHK1 and/or other close cytokinin receptor homologues. Expression in the meristem and the invasion zone of the nodule suggest a role for cytokinin receptors in cytokinin sensing during nodule cell division and differentiation.


Assuntos
Medicago sativa/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Sequência de Aminoácidos , Southern Blotting , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hibridização In Situ , Medicago sativa/genética , Medicago sativa/metabolismo , Dados de Sequência Molecular , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Homologia de Sequência de Aminoácidos , Zeatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...