Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22(2): 1784-6, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515185

RESUMO

We regret that such a misleading comment [Opt. Express (2013)] has been made to our paper. First Lo states in his abstract that "However, the nonlinear Rabi model has already been rigorously proven to be undefined" to later recoil and use the contradictory statement "(. . . ) regarding the BS model with the counter-rotating terms (. . . ) Lo and his co-authors have proven that the model is well defined only if the coupling stregth g is smaller than a critical value gc = ω/4". While Lo focuses on the validity of the quantum optics Hamiltonians and gives a misleading assesment of our manuscript, the focus of our paper is the method to map such a set of Hamiltonians from quantum optics to photonic lattices. Our method is valid for the given class of Hamiltonians and, indeed, precaution must be exerted on the paramater ranges where those Hamiltonians are valid and where their classical simulation is feasible. These parameter ranges have to be specified in for each particular case studied. Furthermore, we gave as example the Buck-Sukumar model including counter-rotating terms which is a valid Hamiltonian for some coupling parameters.


Assuntos
Luz , Modelos Teóricos , Dinâmica não Linear , Fótons , Teoria Quântica , Espalhamento de Radiação
2.
Opt Express ; 21(10): 12888-98, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736508

RESUMO

The interaction of a two-level atom with a single-mode quantized field is one of the simplest models in quantum optics. Under the rotating wave approximation, it is known as the Jaynes-Cummings model and without it as the Rabi model. Real-world realizations of the Jaynes-Cummings model include cavity, ion trap and circuit quantum electrodynamics. The Rabi model can be realized in circuit quantum electrodynamics. As soon as nonlinear couplings are introduced, feasible experimental realizations in quantum systems are drastically reduced. We propose a set of two photonic lattices that classically simulates the interaction of a single two-level system with a quantized field under field nonlinearities and nonlinear couplings as long as the quantum optics model conserves parity. We describe how to reconstruct the mean value of quantum optics measurements, such as photon number and atomic energy excitation, from the intensity and from the field, such as von Neumann entropy and fidelity, at the output of the photonic lattices. We discuss how typical initial states involving coherent or displaced Fock fields can be engineered from recently discussed Glauber-Fock lattices. As an example, the Buck-Sukumar model, where the coupling depends on the intensity of the field, is classically simulated for separable and entangled initial states.


Assuntos
Luz , Modelos Teóricos , Dinâmica não Linear , Fótons , Teoria Quântica , Espalhamento de Radiação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...