Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121573, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936020

RESUMO

To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and cost-effective model enables sufficiently accurate prediction of SOC.

2.
Soil Use Manag ; 40(1): e12951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516181

RESUMO

Riparian buffers are expedient interventions for water quality functions in agricultural landscapes. However, the choice of vegetation and management affects soil microbial communities, which in turn affect nutrient cycling and the production and emission of gases such as nitric oxide (NO), nitrous oxide (N2O), nitrogen gas (N2) and carbon dioxide (CO2). To investigate the potential fluxes of the above-mentioned gases, soil samples were collected from a cropland and downslope grass, willow and woodland riparian buffers from a replicated plot scale experimental facility. The soils were re-packed into cores and to investigate their potential to produce the aforementioned gases via potential denitrification, a potassium nitrate (KNO3 -) and glucose (labile carbon)-containing amendment, was added prior to incubation in a specialized laboratory DENItrification System (DENIS). The resulting NO, N2O, N2 and CO2 emissions were measured simultaneously, with the most NO (2.9 ± 0.31 mg NO m-2) and N2O (1413.4 ± 448.3 mg N2O m-2) generated by the grass riparian buffer and the most N2 (698.1 ± 270.3 mg N2 m-2) and CO2 (27,558.3 ± 128.9 mg CO2 m-2) produced by the willow riparian buffer. Thus, the results show that grass riparian buffer soils have a greater NO3 - removal capacity, evidenced by their large potential denitrification rates, while the willow riparian buffers may be an effective riparian buffer as its soils potentially promote complete denitrification to N2, especially in areas with similar conditions to the current study.

3.
J Agric Sci ; 161(3): 450-463, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37641790

RESUMO

Animal welfare encompasses all aspects of an animal's life and the interactions between animals. Consequently, welfare must be measured across a variety of factors that consider aspects such as health, behaviour, and mental state. Decisions regarding housing and grazing are central to farm management. In this study, two beef cattle systems and their herds were compared from weaning to slaughter across numerous indicators. One herd ("HH") were continuously housed, the other ("HG") were housed only during winter. Inspections of animals were conducted to assess body condition, cleanliness, diarrhoea, hairlessness, nasal discharge, and ocular discharge. Hair and nasal mucus samples were taken for quantification of cortisol and serotonin. Qualitative behaviour assessments (QBA) were also conducted and performance monitored. Physical health indicators were similar between herds with the exception of nasal discharge which was more prevalent in HH (P < 0.001). During winter, QBA yielded differences between herds over PC1 (arousal) (P = 0.032), but not PC2 (mood) (P = 0.139). Through summer, there was a strong difference across both PC1 (P < 0.001) and PC2 (P = 0.002), with HG exhibiting more positive behaviour. A difference was found in hair cortisol levels, with the greatest concentrations observed in HG (P = 0.011), however such a pattern was not seen for nasal mucus cortisol, or for serotonin. Overall, providing summer grazing (HG) appeared to afford welfare benefits to the cattle as shown with more positive QBA assessments, but also slightly better health indicators, notwithstanding the higher levels of cortisol in that group.

4.
Agrofor Syst ; 96(7): 983-995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164326

RESUMO

Vegetated land areas play a significant role in determining the fate of carbon (C) in the global C cycle. Riparian buffer vegetation is primarily implemented for water quality purposes as they attenuate pollutants from immediately adjacent croplands before reaching freashwater systems. However, their prevailing conditions may sometimes promote the production and subsequent emissions of soil carbon dioxide (CO2). Despite this, the understanding of soil CO2 emissions from riparian buffer vegetation and a direct comparison with adjacent croplands they serve remain elusive. In order to quantify the extent of CO2 emissions in such an agro system, we measured CO2 emissions simultaneously with soil and environmental variables for six months in a replicated plot-scale facility comprising of maize cropping served by three vegetated riparian buffers, namely: (i) a novel grass riparian buffer; (ii) a willow riparian buffer, and; (iii) a woodland riparian buffer. These buffered treatments were compared with a no-buffer control. The woodland (322.9 ± 3.1 kg ha- 1) and grass (285 ± 2.7 kg ha- 1) riparian buffer treatments (not significant to each other) generated significantly (p = < 0.0001) the largest CO2 compared to the remainder of the treatments. Our results suggest that during maize production in general, the woodland and grass riparian buffers serving a maize crop pose a CO2 threat. The results of the current study point to the need to consider the benefits for gaseous emissions of mitigation measures conventionally implemented for improving the sustainability of water resources.

5.
Plant Soil ; 477(1-2): 297-318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120385

RESUMO

Purpose: Nitrous oxide (N2O) and methane (CH4) are some of the most important greenhouse gases in the atmosphere of the 21st century. Vegetated riparian buffers are primarily implemented for their water quality functions in agroecosystems. Their location in agricultural landscapes allows them to intercept and process pollutants from adjacent agricultural land. They recycle organic matter, which increases soil carbon (C), intercept nitrogen (N)-rich runoff from adjacent croplands, and are seasonally anoxic. Thus processes producing environmentally harmful gases including N2O and CH4 are promoted. Against this context, the study quantified atmospheric losses between a cropland and vegetated riparian buffers that serve it. Methods: Environmental variables and simultaneous N2O and CH4 emissions were measured for a 6-month period in a replicated plot-scale facility comprising maize (Zea mays L.). A static chamber was used to measure gas emissions. The cropping was served by three vegetated riparian buffers, namely: (i) grass riparian buffer; (ii) willow riparian buffer and; (iii) woodland riparian buffer, which were compared with a no-buffer control. Results: The no-buffer control generated the largest cumulative N2O emissions of 18.9 kg ha- 1 (95% confidence interval: 0.5-63.6) whilst the maize crop upslope generated the largest cumulative CH4 emissions (5.1 ± 0.88 kg ha- 1). Soil N2O and CH4-based global warming potential (GWP) were lower in the willow (1223.5 ± 362.0 and 134.7 ± 74.0 kg CO2-eq. ha- 1 year- 1, respectively) and woodland (1771.3 ± 800.5 and 3.4 ± 35.9 kg CO2-eq. ha- 1 year- 1, respectively) riparian buffers. Conclusions: Our results suggest that in maize production and where no riparian buffer vegetation is introduced for water quality purposes (no buffer control), atmospheric CH4 and N2O concerns may result.

6.
Front Vet Sci ; 9: 832239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372536

RESUMO

Animal welfare is an inextricable part of livestock production and sustainability. Assessing welfare, beyond physical indicators of health, is challenging and often relies on qualitative techniques. Behaviour is a key component of welfare to consider and Qualitative Behaviour Assessment (QBA) aims to achieve this by systematically scoring behaviour across specific terms. In recent years, numerous studies have conducted QBA by using video footage, however, the method was not originally developed using video and video QBA (V-QBA) requires validation. Forty live QBAs were conducted, by two assessors, on housed beef cattle to help fill this validation gap. Video was recorded over the assessment period and a second video assessment was conducted. Live and video scores for each term were compared for both correlation and significant difference. Principle component analysis (PCA) was then conducted and correlations and differences between QBA and V-QBA for the first two components were calculated. Of the 20 terms, three were removed due to an overwhelming majority of scores of zero. Of the remaining 17 terms, 12 correlated significantly, and a significant pairwise difference was found for one ("Bored"). QBA and V-QBA results correlated across both PC1 (defined as "arousal") and PC2 (defined as "mood"). Whilst there was no significant difference between the techniques for PC1, there was for PC2, with V-QBA generally yielding lower scores than QBA. Furthermore, based on PC1 and PC2, corresponding QBA and V-QBA scores were significantly closer than would be expected at random. Results found broad agreement between QBA and V-QBA at both univariate and multivariate levels. However, the lack of absolute agreement and muted V-QBA results for PC2 mean that caution should be taken when implementing V-QBA and that it should ideally be treated independently from live QBA until further evidence is published. Future research should focus on a greater variety of animals, environments, and assessors to address further validation of the method.

7.
Sci Total Environ ; 831: 154819, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35346701

RESUMO

Grasslands cover around 25% of the global ice-free land surface, they are used predominantly for forage and livestock production and are considered to contribute significantly to soil carbon (C) sequestration. Recent investigations into using 'nature-based solutions' to limit warming to <2 °C suggest up to 25% of GHG mitigation might be achieved through changes to grassland management. In this study we evaluate pasture management interventions at the Rothamsted Research North Wyke Farm Platform, under commercial farming conditions, over two years and consider their impacts on net CO2 exchange. We investigate if our permanent pasture system (PP) is, in the short-term, a net sink for CO2 and whether reseeding this with deep-rooting, high-sugar grass (HS) or a mix of high-sugar grass and clover (HSC) might increase the net removal of atmospheric CO2. In general CO2 fluxes were less variable in 2018 than in 2017 while overall we found that net CO2 fluxes for the PP treatment changed from a sink in 2017 (-5.40 t CO2 ha-1 y-1) to a source in 2018 (6.17 t CO2 ha-1 y-1), resulting in an overall small source of 0.76 t CO2 ha-1 over the two years for this treatment. HS showed a similar trend, changing from a net sink in 2017 (-4.82 t CO2 ha-1 y-1) to a net source in 2018 (3.91 t CO2 ha-1 y-1) whilst the HSC field was a net source in both years (3.92 and 4.10 t CO2 ha-1 y-1, respectively). These results suggested that pasture type has an influence in the atmospheric CO2 balance and our regression modelling supported this conclusion, with pasture type and time of the year (and their interaction) being significant factors in predicting fluxes.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Agricultura , Dióxido de Carbono/análise , Solo , Açúcares
8.
J Soils Sediments ; 21(4): 1875-1889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720744

RESUMO

PURPOSE: Intensive livestock grazing has been associated with an increased risk of soil erosion and concomitant negative impacts on the ecological status of watercourses. Whilst various mitigation options are promoted for reducing livestock impacts, there is a paucity of data on the relationship between stocking rates and quantified sediment losses. This evidence gap means there is uncertainty regarding the cost-benefit of policy preferred best management. METHODS: Sediment yields from 15 hydrologically isolated field scale catchments on a heavily instrumented ruminant livestock farm in the south west UK were investigated over ~ 26 months spread across 6 years. Sediment yields were compared to cattle and sheep stocking rates on long-term, winter (November-April), and monthly timescales. The impacts of livestock on soil vegetation cover and bulk density were also examined. Cattle were tracked using GPS collars to determine how grazing related to soil damage. RESULTS: No observable impact of livestock stocking rates of 0.15-1.00 UK livestock units (LU) ha-1 for sheep, and 0-0.77 LU ha-1 for cattle on sediment yields was observed at any of the three timescales. Cattle preferentially spent time close to specific fences where soils were visually damaged. However, there was no indication that livestock have a significant effect on soil bulk density on a field scale. Livestock were housed indoors during winters when most rainfall occurs, and best management practices were used which when combined with low erodibility clayey soils likely limited sediment losses. CONCLUSION: A combination of clayey soils and soil trampling in only a small proportion of the field areas lead to little impact from grazing livestock. Within similar landscapes with best practice livestock grazing management, additional targeted measures to reduce erosion are unlikely to yield a significant cost-benefit. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11368-021-02909-y.

9.
Animal ; 15(6): 100234, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34098494

RESUMO

Urine patches deposited in pasture by grazing animals are sites of reactive nitrogen (N) loss to the environment due to high concentrations of N exceeding pasture uptake requirements. In order to upscale N losses from the urine patch, several urination parameters are required, including where, when and how often urination events occur as well as the volume and chemical composition. There are limited data available in this respect, especially for sheep. Here, we seek to address this knowledge gap by using non-invasive sensor-based technology (accelerometers) on ewes grazing in situ, using a Boolean algorithm to detect urination events in the accelerometer signal. We conducted an initial study with penned Welsh Mountain ewes (n = 5), with accelerometers attached to the hind, to derive urine flow rate and to determine whether urine volume could be estimated from ewe squat time. Then accelerometers attached to the hind of Welsh Mountain ewes (n = 30 at each site) were used to investigate the frequency of sheep urination events (n = 35 946) whilst grazing two extensively managed upland pastures (semi-improved and unimproved) across two seasons (spring and autumn) at each site (35-40 days each). Sheep urinated at a frequency of 10.2 ± 0.2 and 8.1 ± 0.3 times per day in the spring and autumn, respectively, while grazing the semi-improved pasture. Urination frequency was greater (19.0 ± 0.4 and 15.3 ± 0.3 times per day in the spring and autumn, respectively) in the unimproved pasture. Ewe squat duration could be reliably used to predict the volume of urine deposited per event and was thus used to estimate mean daily urine production volumes. Sheep urinated at a rate of 16.6 mL/s and, across the entire dataset, sheep squatted for an average of 9.62 ± 0.03 s per squatting event, producing an estimated average individual urine event volume of 159 ± 1 mL (n = 35 946 events), ranging between 17 and 745 mL (for squat durations of 1 to 45 s). The estimated mean daily urine volume was 2.15 ± 0.04 L (n = 2 669 days) across the entire dataset. The data will be useful for modelling studies estimating N losses (e.g. ammonia (NH3) volatilisation, nitrous oxide (N2O) emission via nitrification and denitrification and nitrate (NO3-) leaching) from urine patches.


Assuntos
Nitrogênio , Óxido Nitroso , Acelerometria/veterinária , Amônia , Animais , Feminino , Estações do Ano , Ovinos
10.
Sci Total Environ ; 661: 696-710, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684838

RESUMO

Intensification of grasslands is necessary to meet the increasing demand of livestock products. The application of nitrogen (N) on grasslands affects the N balance therefore the nitrogen use efficiency (NUE). Emissions of nitrous oxide (N2O) are produced due to N fertilisation and low NUE. These emissions depend on the type and rates of N applied. In this study we have compiled data from 5 UK N fertilised grassland sites (Crichton, Drayton, North Wyke, Hillsborough and Pwllpeiran) covering a range of soil types and climates. The experiments evaluated the effect of increasing rates of inorganic N fertiliser provided as ammonium nitrate (AN) or calcium ammonium nitrate (CAN). The following fertiliser strategies were also explored for a rate of 320 kg N ha-1: using the nitrification inhibitor dicyandiamide (DCD), changing to urea as an N source and splitting fertiliser applications. We measured N2O emissions for a full year in each experiment, as well as soil mineral N, climate data, pasture yield and N offtake. N2O emissions were greater at Crichton and North Wyke whereas Drayton, Hillsborough and Pwllpeiran had the smallest emissions. The resulting average emission factor (EF) of 1.12% total N applied showed a range of values for all the sites between 0.6 and 2.08%. NUE depended on the site and for an application rate of 320 kg N ha-1, N surplus was on average higher than 80 kg N ha-1, which is proposed as a maximum by the EU Nitrogen Expert Panel. N2O emissions tended to be lower when urea was applied instead of AN or CAN, and were particularly reduced when using urea with DCD. Finally, correlations between the factors studied showed that total N input was related to Nofftake and Nexcess; while cumulative emissions and EF were related to yield scaled emissions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Agricultura/métodos , Inglaterra , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Irlanda do Norte , Escócia , País de Gales
11.
Animal ; : 1-11, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29650058

RESUMO

For livestock production systems to play a positive role in global food security, the balance between their benefits and disbenefits to society must be appropriately managed. Based on the evidence provided by field-scale randomised controlled trials around the world, this debate has traditionally centred on the concept of economic-environmental trade-offs, of which existence is theoretically assured when resource allocation is perfect on the farm. Recent research conducted on commercial farms indicates, however, that the economic-environmental nexus is not nearly as straightforward in the real world, with environmental performances of enterprises often positively correlated with their economic profitability. Using high-resolution primary data from the North Wyke Farm Platform, an intensively instrumented farm-scale ruminant research facility located in southwest United Kingdom, this paper proposes a novel, information-driven approach to carry out comprehensive assessments of economic-environmental trade-offs inherent within pasture-based cattle and sheep production systems. The results of a data-mining exercise suggest that a potentially systematic interaction exists between 'soil health', ecological surroundings and livestock grazing, whereby a higher level of soil organic carbon (SOC) stock is associated with a better animal performance and less nutrient losses into watercourses, and a higher stocking density with greater botanical diversity and elevated SOC. We contend that a combination of farming system-wide trials and environmental instrumentation provides an ideal setting for enrolling scientifically sound and biologically informative metrics for agricultural sustainability, through which agricultural producers could obtain guidance to manage soils, water, pasture and livestock in an economically and environmentally acceptable manner. Priority areas for future farm-scale research to ensure long-term sustainability are also discussed.

12.
Sci Total Environ ; 635: 607-617, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29679833

RESUMO

Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N2O), and represent a large proportion of total N2O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N2O emission factors (EFs) for excretal nitrogen (EF3, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N2O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N2O losses. This co-ordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N2O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N2O EF (EF3), of 0.49%, which is <25% of the IPCC default EF3 for excretal returns from grazing cattle. Regression analysis suggests that urine N2O EFs were controlled more by composition than was the case for dung, whilst dung N2O EFs were more related to soil and environmental factors. The urine N2O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N2O EF from urine patches by an average of 46%. The significantly lower excretal EF3 than the IPCC default has implications for the UK's national inventory and for subsequent carbon footprinting of UK ruminant livestock products.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Óxido Nitroso/análise , Urina/química , Agricultura , Poluição do Ar/estatística & dados numéricos , Animais , Bovinos , Inglaterra , Guanidinas , Gado , Solo
13.
Agric Ecosyst Environ ; 235: 229-241, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974862

RESUMO

Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.

14.
Eur J Soil Sci ; 67(4): 374-385, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27867310

RESUMO

The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro-environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21-ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep-rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land-based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail. HIGHLIGHTS: Can meat production systems be developed that are productive yet minimize losses to the environment?The data are from an intensively instrumented capability, which is globally unique and topical.We use sensing technologies and surveys to show the effect of pasture renewal on nutrient losses.Platforms provide evidence of the effect of meteorology, topography and farm activity on nutrient loss.

15.
Environ Sci Pollut Res Int ; 23(8): 7899-910, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26762934

RESUMO

The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.


Assuntos
Agricultura , Carbono/farmacologia , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Desnitrificação , Pradaria , Nitrito Redutases/genética , Nitrogênio/análise , Óxido Nitroso/análise , Oxirredutases/genética , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo
16.
Eur J Soil Sci ; 65(4): 573-583, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25177207

RESUMO

Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3-) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3- addition were the main factors affecting N2O fluxes, whilst glucose, NO3- and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

17.
Sci Total Environ ; 487: 164-72, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24784741

RESUMO

As part of a UK government funded research project to update the UK N2O inventory methodology, a systematic review of published nitrous oxide (N2O) emission factors was carried out of non-UK research, for future comparison and synthesis with the UK measurement based evidence base. The aim of the study is to assess how the UK IPCC default emission factor for N2O emissions derived from synthetic or organic fertiliser inputs (EF1) compares to international values reported in published literature. The availability of data for comparing and/or refining the UK IPCC default value and the possibility of analysing sufficient auxiliary data to propose a Tier 2 EF1 reporting strategy is evaluated. The review demonstrated a lack of consistency in reporting error bounds for fertiliser-derived EFs and N2O flux data with 8% and 44% of publications reporting EF and N2O flux error bounds respectively. There was also poor description of environmental (climate and soil) and experimental design auxiliary data. This is likely to be due to differences in study objectives, however potential improvements to soil parameter reporting are proposed. The review demonstrates that emission factors for agricultural-derived N2O emissions ranged -0.34% to 37% showing high variation compared to the UK Tier 1 IPCC EF1 default values of 1.25% (IPCC 1996) and 1% (IPPC 2006). However, the majority (83%) of EFs reported for UK-relevant soils fell within the UK IPCC EF1 uncertainty range of 0.03% to 3%. Residual maximum likelihood (REML) analysis of the data collated in the review showed that the type and rate of fertiliser N applied and soil type were significant factors influencing EFs reported. Country of emission, the length of the measurement period, the number of splits, the crop type, pH and SOC did not have a significant impact on N2O emissions. A subset of publications where sufficient data was reported for meta-analysis to be conducted was identified. Meta-analysis of effect sizes of 41 treatments demonstrated that the application of fertiliser has a significant effect on N2O emissions in comparison to control plots and that emission factors were significantly different to zero. However no significant relationships between the quantity of fertiliser applied and the effect size of the amount of N2O emitted from fertilised plots compared to control plots were found. Annual addition of fertiliser of 35 to 557 kg N/ha gave a mean increase in emissions of 2.02 ± 0.28 g N2O/ha/day compared to control treatments (p<0.01). Emission factors were significantly different from zero, with a mean emission factor estimated directly from the meta analysis of 0.17 ± 0.02%. This is lower than the IPCC 2006 Tier 1 EF1 value of 1% but falling within the uncertainty bound for the IPCC 2006 Tier 1 EF1 (0.03% to 3%). As only a small number of papers were viable for meta analysis to be conducted due to lack of reporting of the key controlling factors, the estimates of EF in this paper cannot include the true variability under conditions similar to the UK. Review-derived EFs of 0.34% to 37% and mean EF from meta-analysis of 0.17 ± 0.02% highlight variability in reporting EFs depending on the method applied and sample size. A protocol of systematic reporting of N2O emissions and key auxiliary parameters in publications across disciplines is proposed. If adopted this would strengthen the community to inform IPCC Tier 2 reporting development and reduce the uncertainty surrounding reported UK N2O emissions.


Assuntos
Agricultura/estatística & dados numéricos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Dióxido de Nitrogênio/análise , Clima , Fertilizantes , Efeito Estufa , Estações do Ano , Reino Unido
18.
Sci Total Environ ; 409(6): 1104-15, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21211821

RESUMO

As much as 60% of the nitrate in water in England is thought to derive from agriculture. Legislation aims to improve water quality by limiting nitrate concentration in surface and groundwaters to 50 mg l(-1). The UK Government responded to the requirements of the EC Nitrate Directive by delineating Nitrate Vulnerable Zones (NVZs) to cover 55% of England in 2002 and increased it to 70% in 2009. In this study we assessed the cost-effectiveness of measures for implementation in livestock systems to mitigate nitrate leaching in the UK. These estimates were prepared for a range of hypothetical farms representative of typical dairy, beef and sheep farms at different locations in England and Wales and for a list of mitigation measures identified to reduce leaching. The NGAUGE and NFixCycle models were used to estimate leaching from these systems. The costs of implementation of the mitigation measures were also assessed in order to evaluate the cost-effectiveness of these measures. In general, the most effective measures to reduce leaching for all systems were the ones that involved a reduction in stocking rates and grazing time, followed by those involving improvements in fertiliser and crop management. Only in the case of the dairy system was effectiveness affected by location of the farm. The costs for implementation in the sheep system were relatively low compared with beef and dairy systems. Implementation of some of the measures with high cost-effectiveness would need to be incentivised financially or with legislation due to the high costs involved.


Assuntos
Agricultura/economia , Gado , Nitratos/análise , Poluentes do Solo/análise , Gerenciamento de Resíduos/economia , Agricultura/métodos , Análise Custo-Benefício , Inglaterra , Monitoramento Ambiental , Política Ambiental , Fertilizantes/análise , Esterco/análise , Modelos Químicos , País de Gales , Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Poluição da Água/prevenção & controle , Poluição da Água/estatística & dados numéricos
19.
Rapid Commun Mass Spectrom ; 17(22): 2550-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14608627

RESUMO

The N2O and N2 fluxes emitted from a temperate UK grassland soil after fertiliser application (equivalent to 25 and 75 kg N ha(-1)) were simultaneously measured, using a new automated soil incubation system, which replaces soil atmosphere (N2 dominated) with a He+O2 mixture. Dual isotope and isotopomer ratios of the emitted N2O were also determined. Total N2O and N2 fluxes were significantly lower (P<0.001) in the control (0 kg N) than in the 25 and 75 kg N treatments. The total N2O flux was significantly higher (P<0.001) in the 75 kg N than in the 25 kg N treatment. The general patterns of N2O and N2 fluxes were similar for both fertiliser treatments. The total gaseous N loss in the control treatment was nearly all N2, whereas in the fertiliser treatment more N2O than N2 was emitted from the soil. The ratio N2O/N2 fluxes as measured during the experiment suggested three phases in N2O production, in phase 1 nitrification>denitrification, in phase 2 denitrification>nitrification, and in phase 3 denitrification (and total denitrification)>>nitrification. Dual delta15N and delta18O isotope and isotopomer (delta15Nalpha and delta15Nbeta) value ratios of emitted N2O also pointed towards an increasing dominance of the production of N2O by denitrification and total denitrification. The site preference value from the soil-emitted N2O was lower than the troposphere value. This confirmed that the enhanced troposphere N2O site preference could result from back injection of N2O from the stratosphere. The measurements of N2O/N2 flux ratio and the isotopic content of emitted N2O pointed, independently, to similar temporal trends in N2O production processes after fertiliser application to grassland soil. This confirmed that both measurements are suitable diagnostic tools to study the N2O production process in soils.


Assuntos
Agricultura , Poluentes Ocupacionais do Ar/análise , Fertilizantes , Óxido Nitroso/análise , Solo/análise , Nitrogênio/análise , Poaceae
20.
J Neurophysiol ; 86(1): 241-8, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11431505

RESUMO

The physiological effects of 5HT receptor coupling to TTX-resistant Na(+) current, and the signaling pathway involved, was studied in a nociceptor-like subpopulation of rat dorsal root ganglion (DRG) cells (type 2), which can be identified by expression of a low-threshold, slowly inactivating A-current. The 5HT-mediated increase in TTX-resistant Na(+) current in type 2 DRG cells was mimicked and occluded by 10 microM forskolin. Superfusion of type 2 DRG cells on the outside with 1 mM 8-bromo-cAMP or chlorophenylthio-cAMP (CPT-cAMP) increased the Na(+) current, but less than 5HT itself. However, perfusion of the cells inside with 2 mM CPT-cAMP strongly increased the amplitude of control Na(+) currents and completely occluded the effect of 5HT. Thus it appears that the signaling pathway includes cAMP. The phosphodiesterase inhibitor 3-isobutyl-L-methylxanthine (200 microM) also mimicked the effect of 5HT on Na(+) current, suggesting tonic adenylyl cyclase activity. 5HT reduced the amount of current required to evoke action potentials in type 2 DRG cells, suggesting that 5HT may lower the threshold for activation of nociceptor peripheral receptors. The above data suggest that serotonergic modulation of TTX-resistant Na(+) channels through a cAMP-dependent signaling pathway in nociceptors may participate in the generation of hyperalgesia.


Assuntos
AMP Cíclico/metabolismo , Sequestradores de Radicais Livres/farmacologia , Gânglios Espinais/citologia , Nociceptores/efeitos dos fármacos , Serotonina/farmacologia , Canais de Sódio/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Hiperalgesia/metabolismo , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Nociceptores/fisiologia , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Tetrodotoxina/fisiologia , Tionucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...