Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 335: 122330, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572846

RESUMO

An experimental approach mimicking the land-sea continuum in microcosms was developed in order to determine the effect of the terrigenous inputs by soil runoff on the microbial functional potential in hydrocarbon (HC) contaminated marine coastal sediment. We hypothesized that the coalescent event increases the functional potential of microbial communities in marine coastal sediments, influencing the fate of HC in marine coastal ecosystems. The microbial functional potential including the HC degradation ability was assessed by DNA-array to compare the sediment receiving or not terrigenous inputs. The removal of HC and the functional gene richness in sediment was unchanged with the terrigenous inputs. However, the gene variants (GVs) composition was modified indicating functional redundancy. In addition, functional indicators including GVs related to sulfite reduction, denitrification and polyaromatic degradation were identified in higher proportion in sediment receiving terrigenous inputs. The terrigenous inputs modified the functional co-occurrence networks, showing a reorganization of the GVs associations with an increase of the network complexity. Different keystone GVs ensuring similar functions were identified in networks with or without terrigenous inputs, further confirming functional redundancy. We argue that functional redundancy maintains the structure of microbial community in hydrocarbon-contaminated land-sea continuum mixing zone. Our results provide helpful functional information for the monitoring and management of coastal environment affected by human land-based activities.


Assuntos
Microbiota , Humanos , Solo , Sedimentos Geológicos/química , Hidrocarbonetos
2.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204041

RESUMO

Polycyclic aromatic hydrocarbon (PAH) contamination of industrial wasteland soils affects microbial diversity, but little is known about the dose-response effects of such contaminants on taxonomic and functional diversities of rhizospheric and plant endophytic bacteria. This study focused on the response of soil and root bacterial communities associated to poplar grown in a contamination gradient of phenanthrene (PHE). It was hypothesized that the increase in contamination would modify gradually the bacterial diversity and functions. The effects of the PHE contamination were limited to soil communities and did not affect the poplar root endophytome where Streptomyces and Cutibacterium were the most abundant genera. Along the PHE gradient, alpha-diversity indices decreased and the community structure of soil bacteria at the taxonomic level shifted. The abundance of genes involved in PAH-degradation pathways and the relative proportion of certain microbial taxa such as Polaromonas, Sphingopyxis, Peredibacter, Phenylobacterium, Ramlibacter, Sphingomonas, and Pseudomonas, often described as potential PAH biodegraders, increased with the PHE concentration in the soil community. Conversely, the contamination negatively impacted other taxa like Nocardioides, Streptomyces, Gaiella, Solirubrobacter, Bradyrhizobium, and Nitrospira. Functional inference and enzymatic activity measurements revealed that some bacterial functions related to carbon, nitrogen and phosphorus cycles were modified in soil throughout the PHE gradient. This study allowed a deeper understanding of the complex plant-bacteria interactions in the case of soil PAH contamination and the potential impact on soil functioning.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Poluentes do Solo/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias/metabolismo
3.
Microb Ecol ; 86(3): 1696-1708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36646913

RESUMO

Polychlorinated biphenyls (PCBs) are recognized as persistent organic pollutants and accumulate in organisms, soils, waters, and sediments, causing major health and ecological perturbations. Literature reported PCB bio-transformation by fungi and bacteria in vitro, but data about the in situ impact of those compounds on microbial communities remained scarce while being useful to guide biotransformation assays. The present work investigated for the first time microbial diversity from the three-domains-of-life in a long-term contaminated brownfield (a former factory land). Soil samples were ranked according to their PCB concentrations, and a significant increase in abundance was shown according to increased concentrations. Microbial communities structure showed a segregation from the least to the most PCB-polluted samples. Among the identified microorganisms, Bacteria belonging to Gammaproteobacteria class, as well as Fungi affiliated to Saccharomycetes class or Pleurotaceae family, including some species known to transform some PCBs were abundantly retrieved in the highly polluted soil samples.


Assuntos
Bifenilos Policlorados , Poluentes do Solo , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Poluentes do Solo/análise , Biodegradação Ambiental , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Solo/química
4.
Microbiol Res ; 267: 127259, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436444

RESUMO

The land-sea continuum constitutes a mixing zone where soil microbial communities encounter, via runoff, those inhabiting marine coastal sediment resulting in community coalescence. Here, we propose an experimental approach, mimicking the land-sea continuum, to study the microbial community coalescence events in different situations, by 16S and 18S rRNA genes metabarcoding. The microbial community structure of sediment diverged with the soil inputs. For prokaryotes, phylogenetic enrichment and amplicon sequence variants (ASVs) replacements characterized the community changes in sediment receiving soil inputs. For fungi, despite phylogenetic enrichment was not observed, the fungal ASVs richness was maintained by soil inputs. Comparison of microbial communities revealed ASVs specific to sediment receiving soil inputs, and also ASVs shared with soil and/or runoff. Among these specific ASVs, four bacterial and one fungal ASVs were identified as indicators of coalescence. Our study provides evidences that coalescence involves the mixing of microorganisms and of the environment.


Assuntos
Microbiota , Filogenia , Microbiota/genética , Bactérias/genética , Sedimentos Geológicos/microbiologia , Solo/química
5.
FEMS Microbiol Ecol ; 98(10)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36095133

RESUMO

All living organisms theoretically have an optimal stoichiometric nitrogen: phosphorus (N: P) ratio, below and beyond which their growth is affected, but data remain scarce for microbial decomposers. Here, we evaluated optimal N: P ratios of microbial communities involved in cellulose decomposition and assessed their stability when exposed to copper Cu(II). We hypothesized that (1) cellulose decomposition is maximized for an optimal N: P ratio; (2) copper exposure reduces cellulose decomposition and (3) increases microbial optimal N: P ratio; and (4) N: P ratio and copper modify the structure of microbial decomposer communities. We measured cellulose disc decomposition by a natural inoculum in microcosms exposed to a gradient of N: P ratios at three copper concentrations (0, 1 and 15 µM). Bacteria were most probably the main decomposers. Without copper, cellulose decomposition was maximized at an N: P molar ratio of 4.7. Contrary to expectations, at high copper concentration, the optimal N: P ratio (2.8) and the range of N: P ratios allowing decomposition were significantly reduced and accompanied by a reduction of bacterial diversity. Copper contamination led to the development of tolerant taxa probably less efficient in decomposing cellulose. Our results shed new light on the understanding of multiple stressor effects on microbial decomposition in an increasingly stoichiometrically imbalanced world.


Assuntos
Nitrogênio , Fósforo , Bactérias/genética , Celulose , Cobre/análise , Ecossistema , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/microbiologia , Solo/química , Microbiologia do Solo
7.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682588

RESUMO

Microbial populations associated to poplar are well described in non-contaminated and metal-contaminated environments but more poorly in the context of polycyclic aromatic hydrocarbon (PAH) contamination. This study aimed to understand how a gradient of phenanthrene (PHE) contamination affects poplar growth and the fungal microbiome in both soil and plant endosphere (roots, stems and leaves). Plant growth and fitness parameters indicated that the growth of Populus canadensis was impaired when PHE concentration increased above 400 mg kg-1. Values of alpha-diversity indicators of fungal diversity and richness were not affected by the PHE gradient. The PHE contamination had a stronger impact on the fungal community composition in the soil and root compartments compared to that of the aboveground organs. Most of the indicator species whose relative abundance was correlated with PHE contamination decreased along the gradient indicating a toxic effect of PHE on these fungal OTUs (Operational Taxonomic Units). However, the relative abundance of some OTUs such as Cadophora, Alternaria and Aspergillus, potentially linked to PHE degradation or being plant-beneficial taxa, increased along the gradient. Finally, this study allowed a deeper understanding of the dual response of plant and fungal communities in the case of a soil PAH contamination gradient leading to new perspectives on fungal assisted phytoremediation.


Assuntos
Micobioma , Hidrocarbonetos Policíclicos Aromáticos , Populus , Poluentes do Solo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Populus/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
8.
Sci Rep ; 12(1): 7245, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508504

RESUMO

Natural attenuation, involving microbial adaptation, helps mitigating the effect of oil contamination of surface soils. We hypothesized that in soils under fluctuating conditions and receiving oil from seeps, aerobic and anaerobic bacteria as well as fungi could coexist to efficiently degrade hydrocarbons and prevent the spread of pollution. Microbial community diversity was studied in soil longitudinal and depth gradients contaminated with petroleum seeps for at least a century. Hydrocarbon contamination was high just next to the petroleum seeps but this level drastically lowered from 2 m distance and beyond. Fungal abundance and alpha-diversity indices were constant along the gradients. Bacterial abundance was constant but alpha-diversity indices were lower next to the oil seeps. Hydrocarbon contamination was the main driver of microbial community assemblage. 281 bacterial OTUs were identified as indicator taxa, tolerant to hydrocarbon, potentially involved in hydrocarbon-degradation or benefiting from the degradation by-products. These taxa belonging to lineages of aerobic and anaerobic bacteria, have specific functional traits indicating the development of a complex community adapted to the biodegradation of petroleum hydrocarbons and to fluctuating conditions. Fungi are less impacted by oil contamination but few taxa should contribute to the metabolic complementary within the microbial consortia forming an efficient barrier against petroleum dissemination.


Assuntos
Petróleo , Poluentes do Solo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
10.
ISME J ; 15(10): 3062-3075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33953365

RESUMO

Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm-3 h-1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.


Assuntos
Flavobacteriaceae , Gammaproteobacteria , Microbiota , Flavobacterium , Gammaproteobacteria/genética , Polissacarídeos
11.
J Hazard Mater ; 406: 124296, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33268205

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and metals are contaminants of industrial brownfield soils. Pollutants can have harmful effects on fungi, which are major actors of soil functioning. Our objective was to highlight fungal selection following long-term contamination of soils. Fungal diversity was assessed on 30 top-soil samples from ten sites gathered in three groups with different contamination levels and physico-chemical characteristics: 1) uncontaminated controls, 2) slag heaps displaying high PAH and moderate metal contaminations, and 3) settling ponds displaying high metal and intermediate PAH contaminations. Although fungal abundance and richness were similar among the soil groups, the diversity and evenness indices were lower for the slag heap group. Fungal diversity differed among soil groups at the phylum and OTU levels, and indicator species were identified. The relative abundance of Agaricomycetes, Saccharomycetes, Leotiomycetes and Chytridiomycota was higher in the control soils than in the two groups of contaminated soils. Cryptomycota LKM11 representatives were favoured in the slag heap and settling pond groups, and their relative abundance was correlated to the zinc and lead contamination levels. Dothideomycetes - positively linked to PAH contamination - and Eurotiomycetes were specific to the slag heap group. Pucciniomycetes and especially Gymnosporangium members were favoured in the settling pond soils.


Assuntos
Micobioma , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
12.
J Environ Manage ; 280: 111648, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33213993

RESUMO

Sewage sludge digestate is a valuable organic waste which can be used as fertilizer in soil bioremediation. Sewage sludge digestate is not only a good source of nutrients but is also rich in bacteria carrying alkB genes, which are involved in aliphatic hydrocarbons metabolism. Increase of alkB genes ratio in polluted soils has been observed to improve bioremediation efficiency. In this study, for the first time, the genetic potential of indigenous microorganisms of digestate to degrade petroleum products was assessed. The objectives were to study petroleum hydrocarbons (PHCs) removal together with shifts in soil taxa and changes in the concentration of alkB genes after digestate application. Initial alkB genes concentration in contaminated soils and digestate was 1.5% and 4.5%, respectively. During soil incubation with digestate, alkB genes percentage increased up to 11.5% and after the addition of bacteria immobilized onto biochar this value increased up to 60%. Application of digestate positively affected soil respiration and bacterial density, which was concomitant with enhanced PHCs degradation. Incubation of soil amended with digestate resulted in 74% PHCs decrease in 2 months, while extra addition of bacteria immobilized onto biochar increased this value up to 95%. The use of digestate affected the microbial community profiles by increasing initial bacterial density and diversity, including taxa containing recognized PHCs degraders. This study reveals the great potential of digestate as a soil amendment which additionally improves the abundance of alkB genes in petroleum contaminated soils.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Petróleo/análise , Esgotos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
13.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730156

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil organic pollutants. Although PAH-degrading bacteria are present in almost all soils, their selection and enrichment have been shown in historically high PAH contaminated soils. We can wonder if the effectiveness of PAH biodegradation and the PAH-degrading bacterial diversity differ among soils. The stable isotope probing (SIP) technique with 13C-phenanthrene (PHE) as a model PAH was used to: (i) compare for the first time a range of 10 soils with various PAH contamination levels, (ii) determine their PHE-degradation efficiency and (iii) identify the active PHE-degraders using 16S rRNA gene amplicon sequencing from 13C-labeled DNA. Surprisingly, the PHE degradation rate was not directly correlated to the initial level of total PAHs and phenanthrene in the soils, but was mostly explained by the initial abundance and richness of soil bacterial communities. A large diversity of PAH-degrading bacteria was identified for seven of the soils, with differences among soils. In the soils where the PHE degradation activities were the higher, Mycobacterium species were always the dominant active PHE degraders. A positive correlation between PHE-degradation level and the diversity of active PHE-degraders (Shannon index) supported the hypothesis that cooperation between strains led to a more efficient PAH degradation.


Assuntos
Biodegradação Ambiental , Mycobacterium/genética , Mycobacterium/metabolismo , Fenantrenos/metabolismo , Poluentes do Solo/metabolismo , Sondas de DNA , DNA Bacteriano/genética , Marcação por Isótopo/métodos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
14.
ISME J ; 13(7): 1814-1830, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30872807

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. 13C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in 13C-SIP incubations compared to 12C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of 13C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.


Assuntos
Bactérias/isolamento & purificação , Lolium/microbiologia , Metagenômica , Consórcios Microbianos , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Isótopos de Carbono/análise , Raízes de Plantas/metabolismo , Solo/química , Microbiologia do Solo , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Sphingomonadaceae/metabolismo
15.
Sci Total Environ ; 670: 271-281, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30903900

RESUMO

Digestate is an organic by-product of biogas production via anaerobic digestion processes and has a great potential as soil fertilizer due to concentrated nutrients. In this study, we examined digestate as a potential nutrient and microbial seeding for bioremediation of weathered (aged) petroleum hydrocarbon contaminated soils. We analysed 6 different treatments in microcosm using two industrial soils having different textures: a clay rich soil and a sandy soil. After 30 days of incubation, the highest total petroleum hydrocarbons (TPH) removal was observed in microcosms containing digestate together with bulking agent (17.8% and 12.7% higher than control in clay rich soil and sandy soil, respectively) or digestate together with immobilized bacteria (13.4% and 9% higher than control in clay rich soil and sandy soil, respectively). After digestate application microbial respiration was enhanced in sandy soil and inhibited in clay rich soil due to aggregates formation. After bulking agent addition to clay rich soil aggregates size was reduced and oxygen uptake was improved. Application of digestate to soil resulted in the development of distinct microbial groups in amended and non-amended soils. Genera containing species able to degrade TPH like Acinetobacter and Mycobacterium were abundant in digestate and in soil amended with digestate. Quantification of alkB genes, encoding alkane monoxygenase, revealed high concentration of these genes in digestate bacterial community. After application of digestate, the level of alkB genes significantly increased in soils and remained high until the end of the treatment. The study revealed great potential of digestate as a nutrient and bacteria source for soil bioremediation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/análise , Petróleo/análise , Poluição por Petróleo , Solo , Poluentes do Solo/análise
16.
Microb Ecol ; 77(4): 993-1013, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30467715

RESUMO

The intensive industrial activities of the twentieth century have left behind highly contaminated wasteland soils. It is well known that soil parameters and the presence of pollutants shape microbial communities. But in such industrial waste sites, the soil multi-contamination with organic (polycyclic aromatic hydrocarbons, PAH) and metallic (Zn, Pb, Cd) pollutants and long-term exposure may induce a selection pressure on microbial communities that may modify soil functioning. The aim of our study was to evaluate the impact of long-term multi-contamination and soil characteristics on bacterial taxonomic and functional diversity as related to the carbon cycle. We worked on 10 soils from northeast of France distributed into three groups (low anthropised controls, slag heaps, and settling ponds) based on their physico-chemical properties (texture, C, N) and pollution level. We assessed bacterial taxonomic diversity by 16S rDNA Illumina sequencing, and functional diversity using Biolog® and MicroResp™ microtiter plate tools. Although taxonomic diversity at the phylum level was not different among the soil groups, many operational taxonomic units were influenced by metal or PAH pollution, and by soil texture and total nitrogen content. Functional diversity was not influenced by PAH contamination while metal pollution selected microbial communities with reduced metabolic functional diversity but more tolerant to zinc. Limited microbial utilisation of carbon substrates in metal-polluted soils was mainly due to the nitrogen content. Based on these two observations, we hypothesised that reduced microbial activity and lower carbon cycle-related functional diversity may have contributed to the accumulation of organic matter in the soils that exhibited the highest levels of metal pollution.


Assuntos
Bactérias/classificação , Ciclo do Carbono , Microbiota , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Bactérias/efeitos dos fármacos , DNA Bacteriano/análise , França , Resíduos Industriais , RNA Ribossômico 16S/análise
17.
Front Microbiol ; 9: 2999, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564224

RESUMO

In soil, organic matter and mineral particles (soil particles; SPs) strongly influence the bio-available fraction of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and the metabolic activity of bacteria. However, the effect of SPs as well as comparative approaches to discriminate the metabolic responses to PAHs from those to simple carbon sources are seldom considered in mineralization experiments, limiting our knowledge concerning the dynamics of contaminants in soil. In this study, the metabolic profile of a model PAH-degrading bacterium, Pseudomonas putida G7, grown in the absence and presence of different SPs (i.e., sand, clays and humic acids), using either phenanthrene or glucose as the sole carbon and energy source, was characterized using vibrational spectroscopy (i.e., FT-Raman and FT-IR spectroscopy) and multivariate classification analysis (i.e., PLS-DA). The different type of SPs specifically altered the metabolic profile of P. putida, especially in combination with phenanthrene. In comparison to the cells grown in the absence of SPs, sand induced no remarkable change in the metabolic profile of the cells, whereas clays and humic acids affected it the most, as revealed by the higher discriminative accuracy (R 2, RMSEP and sensitivity) of the PLS-DA for those conditions. With respect to the carbon-source (phenanthrene vs. glucose), no effect on the metabolic profile was evident in the absence of SPs or in the presence of sand. On the other hand, with clays and humic acids, more pronounced spectral clusters between cells grown on glucose or on phenanthrene were evident, suggesting that these SPs modify the way cells access and metabolize PAHs. The macromolecular changes regarded mainly protein secondary structures (a shift from α-helices to ß-sheets), amino acid levels, nucleic acid conformation and cell wall carbohydrates. Our results provide new interesting evidences that SPs specifically interact with PAHs in defining bacteria metabolic profiles and further emphasize the importance of studying the interaction of bacteria with their surrounding matrix to deeply understand PAHs degradation in soils.

18.
Environ Sci Pollut Res Int ; 25(29): 29556-29571, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136188

RESUMO

PAH biodegradation in plant rhizosphere has been investigated in many studies, but the timescale of degradation and degrading bacteria activity was rarely considered. We explored the impact of plants on the temporal variability of PAH degradation, microbial abundance, activity, and bacterial community structure in a rhizotron experiment. A historically contaminated soil was spiked with PAHs, planted or not with alfalfa, over 22 days with sampling once a week. In both conditions, most of the spiked PAHs were dissipated during the first week, conducting to polar polycyclic aromatic compound production and to decreased richness and diversity of bacterial communities. We showed a rapid impact of the rhizosphere on PAH degradation via the increased activity of PAH-degrading bacteria. After 12 days, PAH degradation was significantly higher in the planted (100% degradation) than in unplanted (70%) soil. Gram-negative (Proteobacteria) PAH-dioxygenase genes and transcripts were higher in planted than unplanted soil and were correlated to the spiked PAH degradation. Conversely, Gram-positive (Actinobacteria) PAH-dioxygenase gene transcription was constant over time in both conditions. At 12 days, plant growth favored the activity of many Gammaproteobacteria (Pseudomonadaceae, Stenotrophomonas, and Acinetobacter) while in unplanted soil Alphaproteobacteria (Sphingomonadaceae, Sphingobium, and Magnetospirillum) and Actinobacteria (Iamia, Geodermatophilaceae, and Solirubrobacterales) were more active.


Assuntos
Medicago sativa/crescimento & desenvolvimento , Hidrocarbonetos Policíclicos Aromáticos/análise , Proteobactérias/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Biodiversidade , França , Medicago sativa/metabolismo , Proteobactérias/classificação , Rizosfera , Fatores de Tempo
19.
Can J Microbiol ; 63(11): 881-893, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28841396

RESUMO

At centimetre scale, soil bacterial assemblages are shaped by both abiotic (edaphic characteristics and pollutants) and biotic parameters. In a rhizobox experiment carried out on planted industrial soil contaminated with polycyclic aromatic hydrocarbons (PAHs), we previously showed that pollution was distributed randomly with hot and cold spots. Therefore, in the present study, we investigated the effect of this patchy PAH distribution on the bacterial community assemblage and compared it with that of root depth gradients found in the rhizosphere of either alfalfa or ryegrass. Sequencing of 16S rRNA amplicons revealed a higher bacterial diversity in ryegrass rhizosphere and enrichment in specific taxa by the 2 plant species. Indeed, Bacteroidetes, Firmicutes, and Gammaproteobacteria were globally favored in alfalfa, whereas Acidimicrobiia, Chloroflexi, Alpha-, and Betaproteobacteria were globally favored in ryegrass rhizosphere. The presence of alfalfa created depth gradients of root biomass, carbohydrate, and pH, and actually shaped the bacterial assemblage, favoring Actinobacteria near the surface and Gemmatimonadetes and Proteobacteria at greater depths. Contrarily, the bacterial assemblage was homogeneous all along depths of the ryegrass root system. With both plant species, the PAH content and random distribution had no significant effect on bacterial assemblage. Globally, at centimeter scale, bacterial community assemblages were mostly shaped by soil physical and chemical depth gradients induced by root growth but not by patchy PAH content.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise , Biomassa , Medicago sativa/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas/microbiologia , RNA Ribossômico 16S/genética , Solo/química
20.
J Hazard Mater ; 329: 1-10, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28119192

RESUMO

A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Resíduos Industriais , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...