Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165811, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506902

RESUMO

Adopting land management practices that increase the stock of soil organic carbon (SOC) in croplands is widely promoted as a win-win strategy to enhance soil health and mitigate climate change. In this context, the definition of reference SOC content and stock values is needed to provide reliable targets to farmers, policymakers, and stakeholders. In this study, we used the LUCAS dataset to compare different methods for evaluating reference SOC content and stock values in European croplands topsoils (0-20 cm depth). Methods gave generally similar estimates although being built on very different assumptions. In the absence of an objective criterion to establish which approach is the most suitable to determine SOC reference values, we propose an ensemble modelling approach that consists in extracting the estimates using different relevant methods and retaining the median value among them. Interestingly, this approach led us to select values from the three different approaches with similar frequencies. Using estimated bulk density values, we obtained a first rough estimate of 3.5 Gt C of SOC storage potential in the cropland topsoils that we interpret as a long-term aspirational target that would be reachable only under extreme changes in agricultural practices. The use of additional methods in the ensemble modelling approach and more valid statistical spatial estimates may further refine our approach designed for the estimation of SOC reference values for croplands.

2.
Agron Sustain Dev ; 43(1): 21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777236

RESUMO

There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.

3.
Nat Commun ; 13(1): 7676, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509763

RESUMO

Soil carbon dynamics is strongly controlled by depth globally, with increasingly slow dynamics found at depth. The mechanistic basis remains however controversial, limiting our ability to predict carbon cycle-climate feedbacks. Here we combine radiocarbon and thermal analyses with long-term incubations in absence/presence of continuously 13C/14C-labelled plants to show that bioenergetic constraints of decomposers consistently drive the depth-dependency of soil carbon dynamics over a range of mineral reactivity contexts. The slow dynamics of subsoil carbon is tightly related to both its low energy density and high activation energy of decomposition, leading to an unfavourable 'return-on-energy-investment' for decomposers. We also observe strong acceleration of millennia-old subsoil carbon decomposition induced by roots ('rhizosphere priming'), showing that sufficient supply of energy by roots is able to alleviate the strong energy limitation of decomposition. These findings demonstrate that subsoil carbon persistence results from its poor energy quality together with the lack of energy supply by roots due to their low density at depth.


Assuntos
Carbono , Solo , Ciclo do Carbono , Agricultura , Rizosfera , Microbiologia do Solo
4.
Glob Chang Biol ; 27(8): 1662-1677, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33342032

RESUMO

Since the last glacial maximum, soil formation related to ice-cover shrinkage has been one major sink of carbon accumulating as soil organic matter (SOM), a phenomenon accelerated by the ongoing global warming. In recently deglacierized forelands, processes of SOM accumulation, including those that control carbon and nitrogen sequestration rates and biogeochemical stability of newly sequestered carbon, remain poorly understood. Here, we investigate the build-up of SOM during the initial stages (up to 410 years) of topsoil development in 10 glacier forelands distributed on four continents. We test whether the net accumulation of SOM on glacier forelands (i) depends on the time since deglacierization and local climatic conditions (temperature and precipitation); (ii) is accompanied by a decrease in its stability and (iii) is mostly due to an increasing contribution of organic matter from plant origin. We measured total SOM concentration (carbon, nitrogen), its relative hydrogen/oxygen enrichment, stable isotopic (13 C, 15 N) and carbon functional groups (C-H, C=O, C=C) compositions, and its distribution in carbon pools of different thermal stability. We show that SOM content increases with time and is faster on forelands experiencing warmer climates. The build-up of SOM pools shows consistent trends across the studied soil chronosequences. During the first decades of soil development, the low amount of SOM is dominated by a thermally stable carbon pool with a small and highly thermolabile pool. The stability of SOM decreases with soil age at all sites, indicating that SOM storage is dominated by the accumulation of labile SOM during the first centuries of soil development, and suggesting plant carbon inputs to soil (SOM depleted in nitrogen, enriched in hydrogen and in aromatic carbon). Our findings highlight the potential vulnerability of SOM stocks from proglacial areas to decomposition and suggest that their durability largely depends on the relative contribution of carbon inputs from plants.


Assuntos
Camada de Gelo , Solo , Carbono , Nitrogênio , Temperatura
5.
J Hazard Mater ; 273: 17-26, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24709478

RESUMO

Engineered TiO2 nanoparticles (TiO2-NPs) are present in a large variety of consumer products, and are produced in largest amount. The building industry is a major sector using TiO2-NPs, especially in paints. The fate of NPs after their release in the environment is still largely unknown, and their possible transfer in plants and subsequent impacts have not been studied in detail. The foliar transfer pathway is even less understood than the root pathway. In this study, lettuces were exposed to pristine TiO2-NPs and aged paint leachate containing TiO2-NPs and microparticles (TiO2-MPs). Internalization and in situ speciation of Ti were investigated by a combination of microscopic and spectroscopic techniques. Not only TiO2-NPs pristine and from aged paints, but also TiO2-MPs were internalized in lettuce leaves, and observed in all types of tissues. No change in speciation was noticed, but an organic coating of TiO2-NPs is likely. Phytotoxicity markers were tested for plants exposed to pristine TiO2-NPs. No acute phytotoxicity was observed; variations were only observed in glutathione and phytochelatin levels but remained low as compared to typical values. These results obtained on the foliar uptake mechanisms of nano- and microparticles are important in the perspective of risk assessment of atmospheric contaminations.


Assuntos
Corantes/farmacologia , Lactuca/metabolismo , Nanopartículas , Pintura , Folhas de Planta/metabolismo , Titânio/farmacologia , Glutationa/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/ultraestrutura , Microscopia Eletrônica de Varredura , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
6.
J Hazard Mater ; 264: 98-106, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24275476

RESUMO

The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products.


Assuntos
Lactuca/química , Nanopartículas/química , Folhas de Planta/química , Prata/química , Lactuca/efeitos dos fármacos , Nanopartículas/toxicidade , Folhas de Planta/efeitos dos fármacos , Prata/toxicidade
7.
Microb Ecol ; 60(4): 816-28, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20593174

RESUMO

Microbial communities are of major importance in the decomposition of soil organic matter. However, the identities and dynamics of the populations involved are still poorly documented. We investigated, in an 11-month field experiment, how the initial biochemical quality of crop residues could lead to specific decomposition patterns, linking biochemical changes undergone by the crop residues to the respiration, biomass, and genetic structure of the soil microbial communities. Wheat, alfalfa, and rape residues were incorporated into the 0-15 cm layer of the soil of field plots by tilling. Biochemical changes in the residues occurring during degradation were assessed by near-infrared spectroscopy. Qualitative modifications in the genetic structure of the bacterial communities were determined by bacterial-automated ribosomal intergenic spacer analysis. Bacterial diversity in the three crop residues at early and late stages of decomposition process was further analyzed from a molecular inventory of the 16S rDNA. The decomposition of plant residues in croplands was shown to involve specific biochemical characteristics and microbial community dynamics which were clearly related to the quality of the organic inputs. Decay stage and seasonal shifts occurred by replacement of copiotrophic bacterial groups such as proteobacteria successful on younger residues with those successful on more extensively decayed material such as Actinobacteria. However, relative abundance of proteobacteria depended greatly on the composition of the residues, with a gradient observed from alfalfa to wheat, suggesting that this bacterial group may represent a good indicator of crop residues degradability and modifications during the decomposition process.


Assuntos
Bactérias/isolamento & purificação , Brassica rapa/microbiologia , Medicago sativa/microbiologia , Microbiologia do Solo , Triticum/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Brassica rapa/química , DNA Bacteriano/genética , DNA Ribossômico/genética , Medicago sativa/química , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Solo/análise , Triticum/química
8.
Sci Total Environ ; 407(3): 1200-5, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18723206

RESUMO

We investigated the power of near infrared (NIR) analysis for the quantitative assessment of soil quality in a wildfire chronosequence. The effect of wildfire disturbance and soil engineering activity of earthworms on soil organic matter quality was first assessed with principal component analysis of NIR spectra. Three soil quality indices were further calculated using an adaptation of the method proposed by Velasquez et al. [Velasquez, E., Lavelle, P., Andrade, M. GISQ, a multifunctional indicator of soil quality. Soil Biol Biochem 2007; 39: 3066-3080.], each one addressing an ecosystem service provided by soils: organic matter storage, nutrient supply and biological activity. Partial least squares regression models were developed to test the predicting ability of NIR analysis for these soil quality indices. All models reached coefficients of determination above 0.90 and ratios of performance to deviation above 2.8. This finding provides new opportunities for the monitoring of soil quality, using NIR scanning of soil samples.


Assuntos
Incêndios , Solo/análise , Solo/normas , Amônia/análise , Bactérias/enzimologia , Celulase/análise , Concentração de Íons de Hidrogênio , Hidrolases/análise , Metais/análise , Nitratos/análise , Nitrogênio/análise , Compostos Orgânicos/análise , Microbiologia do Solo , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...