Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(4): 1201-1212, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38319296

RESUMO

Structurally and conformationally diverse databases are needed to train accurate neural networks or kernel-based potentials capable of exploring the complex free energy landscape of flexible functional organic molecules. Curating such databases for species beyond "simple" drug-like compounds or molecules composed of well-defined building blocks (e.g., peptides) is challenging as it requires thorough chemical space mapping and evaluation of both chemical and conformational diversities. Here, we introduce the OFF-ON (organic fragments from organocatalysts that are non-modular) database, a repository of 7869 equilibrium and 67,457 nonequilibrium geometries of organic compounds and dimers aimed at describing conformationally flexible functional organic molecules, with an emphasis on photoswitchable organocatalysts. The relevance of this database is then demonstrated by training a local kernel regression model on a low-cost semiempirical baseline and comparing it with a PBE0-D3 reference for several known catalysts, notably the free energy surfaces of exemplary photoswitchable organocatalysts. Our results demonstrate that the OFF-ON data set offers reliable predictions for simulating the conformational behavior of virtually any (photoswitchable) organocatalyst or organic compound composed of H, C, N, O, F, and S atoms, thereby opening a computationally feasible route to explore complex free energy surfaces in order to rationalize and predict catalytic behavior.


Assuntos
Redes Neurais de Computação , Peptídeos , Peptídeos/química , Entropia , Compostos Orgânicos , Bases de Dados Factuais
2.
J Chem Phys ; 156(15): 154112, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459295

RESUMO

Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry, and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environment effects, which promote competing interactions and alter their static gas-phase properties. Recently, neural network potentials (NNPs) trained on density functional theory (DFT) data have become increasingly popular to simulate molecular phenomena in condensed phase with an accuracy comparable to ab initio methods. To date, most applications have centered on solid-state materials or fairly simple molecules made of a limited number of elements. Herein, we focus on the persistence and strength of chalcogen bonds involving a benzotelluradiazole in condensed phase. While the tellurium-containing heteroaromatic molecules are known to exhibit pronounced interactions with anions and lone pairs of different atoms, the relevance of competing intermolecular interactions, notably with the solvent, is complicated to monitor experimentally but also challenging to model at an accurate electronic structure level. Here, we train direct and baselined NNPs to reproduce hybrid DFT energies and forces in order to identify what the most prevalent non-covalent interactions occurring in a solute-Cl--THF mixture are. The simulations in explicit solvent highlight the clear competition with chalcogen bonds formed with the solvent and the short-range directionality of the interaction with direct consequences for the molecular properties in the solution. The comparison with other potentials (e.g., AMOEBA, direct NNP, and continuum solvent model) also demonstrates that baselined NNPs offer a reliable picture of the non-covalent interaction interplay occurring in solution.


Assuntos
Redes Neurais de Computação , Ânions/química , Solventes
3.
J Chem Theory Comput ; 18(2): 968-977, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35080892

RESUMO

We introduce a novel multilevel enhanced sampling strategy grounded on Gaussian-accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs-accelerated implementation within the Tinker-HP molecular dynamics package. We introduce the new "dual-water" mode and its use with the flexible AMOEBA polarizable force field. By adding harmonic boosts to the water stretching and bonding terms, it accelerates the solvent-solute interactions while enabling speedups, thanks to the use of fast multiple-time step integrators. To further reduce the time-to-solution, we couple GaMD to Umbrella Sampling (US). The GaMD─US/dual-water approach is tested on the 1D Potential of Mean Force (PMF) of the solvated CD2-CD58 system (168 000 atoms), allowing the AMOEBA PMF to converge within 1 kcal/mol of the experimental value. Finally, Adaptive Sampling (AS) is added, enabling AS-GaMD capabilities but also the introduction of the new Adaptive Sampling-US-GaMD (ASUS-GaMD) scheme. The highly parallel ASUS-GaMD setup decreases time to convergence by, respectively, 10 and 20 times, compared to GaMD-US and US. Overall, beside the acceleration of PMF computations, Tinker-HP now allows for the simultaneous use of Adaptive Sampling and GaMD-"dual water" enhanced sampling approaches increasing the applicability of polarizable force fields to large-scale simulations of biological systems.


Assuntos
Simulação de Dinâmica Molecular , Água , Solventes , Termodinâmica
4.
J Phys Chem Lett ; 12(26): 6218-6226, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196568

RESUMO

Following our previous work ( Chem. Sci. 2021, 12, 4889-4907), we study the structural dynamics of the SARS-CoV-2 Main Protease dimerization interface (apo dimer) by means of microsecond adaptive sampling molecular dynamics simulations (50 µs) using the AMOEBA polarizable force field (PFF). This interface is structured by a complex H-bond network that is stable only at physiological pH. Structural correlations analysis between its residues and the catalytic site confirms the presence of a buried allosteric site. However, noticeable differences in allosteric connectivity are observed between PFFs and non-PFFs. Interfacial polarizable water molecules are shown to appear at the heart of this discrepancy because they are connected to the global interface H-bond network and able to adapt their dipole moment (and dynamics) to their diverse local physicochemical microenvironments. The water-interface many-body interactions appear to drive the interface volume fluctuations and to therefore mediate the allosteric interactions with the catalytic cavity.


Assuntos
Simulação de Dinâmica Molecular , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/química , Água/química , Sítio Alostérico , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Dimerização , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , SARS-CoV-2/isolamento & purificação , Proteínas da Matriz Viral/metabolismo
5.
Chem Sci ; 12(13): 4889-4907, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34168762

RESUMO

We provide an unsupervised adaptive sampling strategy capable of producing µs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs). The global exploration problem is decomposed into a set of separate MD trajectories that can be restarted within a selective process to achieve sufficient phase-space sampling. Accurate statistical properties can be obtained through reweighting. Within this highly parallel setup, the Tinker-HP package can be powered by an arbitrary large number of GPUs on supercomputers, reducing exploration time from years to days. This approach is used to tackle the urgent modeling problem of the SARS-CoV-2 Main Protease (Mpro) producing more than 38 µs of all-atom simulations of its apo (ligand-free) dimer using the high-resolution AMOEBA PFF. The first 15.14 µs simulation (physiological pH) is compared to available non-PFF long-timescale simulation data. A detailed clustering analysis exhibits striking differences between FFs, with AMOEBA showing a richer conformational space. Focusing on key structural markers related to the oxyanion hole stability, we observe an asymmetry between protomers. One of them appears less structured resembling the experimentally inactive monomer for which a 6 µs simulation was performed as a basis for comparison. Results highlight the plasticity of the Mpro active site. The C-terminal end of its less structured protomer is shown to oscillate between several states, being able to interact with the other protomer, potentially modulating its activity. Active and distal site volumes are found to be larger in the most active protomer within our AMOEBA simulations compared to non-PFFs as additional cryptic pockets are uncovered. A second 17 µs AMOEBA simulation is performed with protonated His172 residues mimicking lower pH. Data show the protonation impact on the destructuring of the oxyanion loop. We finally analyze the solvation patterns around key histidine residues. The confined AMOEBA polarizable water molecules are able to explore a wide range of dipole moments, going beyond bulk values, leading to a water molecule count consistent with experimental data. Results suggest that the use of PFFs could be critical in drug discovery to accurately model the complexity of the molecular interactions structuring Mpro.

7.
J Chem Theory Comput ; 17(4): 2034-2053, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33755446

RESUMO

We present the extension of the Tinker-HP package (Lagardère, Chem. Sci. 2018, 9, 956-972) to the use of Graphics Processing Unit (GPU) cards to accelerate molecular dynamics simulations using polarizable many-body force fields. The new high-performance module allows for an efficient use of single- and multiple-GPU architectures ranging from research laboratories to modern supercomputer centers. After detailing an analysis of our general scalable strategy that relies on OpenACC and CUDA, we discuss the various capabilities of the package. Among them, the multiprecision possibilities of the code are discussed. If an efficient double precision implementation is provided to preserve the possibility of fast reference computations, we show that a lower precision arithmetic is preferred providing a similar accuracy for molecular dynamics while exhibiting superior performances. As Tinker-HP is mainly dedicated to accelerate simulations using new generation point dipole polarizable force field, we focus our study on the implementation of the AMOEBA model. Testing various NVIDIA platforms including 2080Ti, 3090, V100, and A100 cards, we provide illustrative benchmarks of the code for single- and multicards simulations on large biosystems encompassing up to millions of atoms. The new code strongly reduces time to solution and offers the best performances to date obtained using the AMOEBA polarizable force field. Perspectives toward the strong-scaling performance of our multinode massive parallelization strategy, unsupervised adaptive sampling and large scale applicability of the Tinker-HP code in biophysics are discussed. The present software has been released in phase advance on GitHub in link with the High Performance Computing community COVID-19 research efforts and is free for Academics (see https://github.com/TinkerTools/tinker-hp).

8.
ArXiv ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33173801

RESUMO

We present the extension of the Tinker-HP package (Lagard\`ere et al., Chem. Sci., 2018,9, 956-972) to the use of Graphics Processing Unit (GPU) cards to accelerate molecular dynamics simulations using polarizable many-body force fields. The new high-performance module allows for an efficient use of single- and multi-GPU architectures ranging from research laboratories to modern supercomputer centers. After detailing an analysis of our general scalable strategy that relies on OpenACC and CUDA, we discuss the various capabilities of the package. Among them, the multi-precision possibilities of the code are discussed. If an efficient double precision implementation is provided to preserve the possibility of fast reference computations, we show that a lower precision arithmetic is preferred providing a similar accuracy for molecular dynamics while exhibiting superior performances. As Tinker-HP is mainly dedicated to accelerate simulations using new generation point dipole polarizable force field, we focus our study on the implementation of the AMOEBA model. Testing various NVIDIA platforms including 2080Ti, 3090, V100 and A100 cards, we provide illustrative benchmarks of the code for single- and multi-cards simulations on large biosystems encompassing up to millions of atoms. The new code strongly reduces time to solution and offers the best performances to date obtained using the AMOEBA polarizable force field. Perspectives toward the strong-scaling performance of our multi-node massive parallelization strategy, unsupervised adaptive sampling and large scale applicability of the Tinker-HP code in biophysics are discussed. The present software has been released in phase advance on GitHub in link with the High Performance Computing community COVID-19 research efforts and is free for Academics (see https://github.com/TinkerTools/tinker-hp).

9.
J Chem Theory Comput ; 16(4): 2013-2020, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32178519

RESUMO

Using polarizable (AMOEBA) and nonpolarizable (CHARMM) force fields, we compare the relative free energy stability of two extreme conformations of the HIV-1 nucleocapsid protein NCp7 that had been previously experimentally advocated to prevail in solution. Using accelerated sampling techniques, we show that they differ in stability by no more than 0.75-1.9 kcal/mol depending on the reference protein sequence. While the extended form appears to be the most probable structure, both forms should thus coexist in water explaining the differing NMR findings.


Assuntos
Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Entropia , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular
10.
J Chem Theory Comput ; 15(6): 3694-3709, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31059250

RESUMO

Steered molecular dynamic (SMD) is a powerful technique able to accelerate rare event sampling in Molecular Dynamics (MD) simulations by applying an external force to a set of chosen atoms. Despite generating nonequilibrium simulations, SMD remains capable of reconstructing equilibrium properties such as the Potential of Mean Force (PMF). Of course, one would like to use all types of force fields (FF) ranging from classical ones to more advanced polarizable models using point induced dipoles and distributed multipoles such as AMOEBA. To enable such studies, the SMD methodology has been implemented in the framework of the massively parallel Tinker-HP software allowing for both long polarizable and non-polarizable MD simulations of large proteins. To validate this new implementation, we first compared the Tinker-HP SMD results to the literature. Tests have been performed on three different benchmark systems: the M-A deca-alanine (112 atoms), the ubiquitin (9737 atoms), and the CD2CD58 complex (97594 atoms). Non-polarizable (AMBER99, AMBER99SB, CHARMM22/CMAP, and OPLS-AA/L) and polarizable (AMOEBAPRO13 and AMOEBABIO18) force fields have been used. For each one of them, PMFs have been reconstructed and compared in terms of free energy barrier and hydrogen bonding fluctuations behavior over time. Using a SMD velocity of 0.01 Å/ps applied to a set of 20 trajectories, we show that polarizable and non-polarizable force fields do not always agree. As it could be anticipated, strong discrepancies are noticed between polarizable and non-polarizable models when considered in vacuum, whereas results are more comparable when a water environment is added. However, for the largest system, i.e., the CD2CD58 complex, strong differences related to the modeling of a salt bridge are noticed exhibiting some potential issues with classical FFs. Overall, such simulations highlight the importance of the inclusion of polarization effects as PMF free energy barriers computed with AMOEBA always decrease compared to non-polarizable force fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...