Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 35(24): 5243-5248, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31077310

RESUMO

MOTIVATION: The use of post-processing tools to maximize the information gained from a proteomics search engine is widely accepted and used by the community, with the most notable example being Percolator-a semi-supervised machine learning model which learns a new scoring function for a given dataset. The usage of such tools is however bound to the search engine's scoring scheme, which doesn't always make full use of the intensity information present in a spectrum. We aim to show how this tool can be applied in such a way that maximizes the use of spectrum intensity information by leveraging another machine learning-based tool, MS2PIP. MS2PIP predicts fragment ion peak intensities. RESULTS: We show how comparing predicted intensities to annotated experimental spectra by calculating direct similarity metrics provides enough information for a tool such as Percolator to accurately separate two classes of peptide-to-spectrum matches. This approach allows using more information out of the data (compared with simpler intensity based metrics, like peak counting or explained intensities summing) while maintaining control of statistics such as the false discovery rate. AVAILABILITY AND IMPLEMENTATION: All of the code is available online at https://github.com/compomics/ms2rescore. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteômica , Ferramenta de Busca , Algoritmos , Bases de Dados de Proteínas , Software
2.
Anal Chem ; 90(19): 11636-11642, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188119

RESUMO

When analyzing mass spectrometry imaging data sets, assigning a molecule to each of the thousands of generated images is a very complex task. Recent efforts have taken lessons from (tandem) mass spectrometry proteomics and applied them to imaging mass spectrometry metabolomics, with good results. Our goal is to go a step further in this direction and apply a well established, data-driven method to improve the results obtained from an annotation engine. By using a data-driven rescoring strategy, we are able to consistently improve the sensitivity of the annotation engine while maintaining control of statistics like estimated rate of false discoveries. All the code necessary to run a search and extract the additional features can be found at https://github.com/anasilviacs/sm-engine and to rescore the results from a search in https://github.com/anasilviacs/rescore-metabolites .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...