Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 5: 100181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37143957

RESUMO

Inkjet printing has been extensively explored in recent years to produce personalised medicines due to its low cost and versatility. Pharmaceutical applications have ranged from orodispersible films to complex polydrug implants. However, the multi-factorial nature of the inkjet printing process makes formulation (e.g., composition, surface tension, and viscosity) and printing parameter optimization (e.g., nozzle diameter, peak voltage, and drop spacing) an empirical and time-consuming endeavour. Instead, given the wealth of publicly available data on pharmaceutical inkjet printing, there is potential for a predictive model for inkjet printing outcomes to be developed. In this study, machine learning (ML) models (random forest, multilayer perceptron, and support vector machine) to predict printability and drug dose were developed using a dataset of 687 formulations, consolidated from in-house and literature-mined data on inkjet-printed formulations. The optimized ML models predicted the printability of formulations with an accuracy of 97.22%, and predicted the quality of the prints with an accuracy of 97.14%. This study demonstrates that ML models can feasibly provide predictive insights to inkjet printing outcomes prior to formulation preparation, affording resource- and time-savings.

2.
Int J Pharm X ; 4: 100120, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35755603

RESUMO

Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput.

3.
J Control Release ; 337: 530-545, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339755

RESUMO

Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through analyzing large datasets. Herein, literature-mined data for developing AI machine learning (ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro dissolution properties. A total of 968 formulations were mined and assessed from 114 articles. The ML techniques explored were able to learn and provide accuracies as high as 93% for values in the filament hot melt extrusion process. In addition, ML algorithms were able to use data from the composition of the formulations with additional input features to predict the drug release of 3D printed medicines. The best prediction was obtained by an artificial neural network that was able to predict drug release times of a formulation with a mean error of ±24.29 min. In addition, the most important variables were revealed, which could be leveraged in formulation development. Thus, it was concluded that ML proved to be a suitable approach to modelling the 3D printing workflow.


Assuntos
Inteligência Artificial , Impressão Tridimensional , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Aprendizado de Máquina , Tecnologia Farmacêutica
4.
Int J Pharm ; 590: 119837, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32961295

RESUMO

Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being designed, developed and dispensed for the needs of the patient. The FDM 3DP process begins with the production of drug-loaded filaments by hot melt extrusion (HME), followed by the printing of a drug product using a FDM 3D printer. However, the optimization of the fabrication parameters is a time-consuming, empirical trial approach, requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was developed to accelerate FDM 3D printing using AI machine learning techniques (MLTs). In total, 614 drug-loaded formulations were designed from a comprehensive list of 145 different pharmaceutical excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI models predicted key fabrication parameters with accuracies of 76% and 67% for the printability and the filament characteristics, respectively. Furthermore, the AI models predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 °C and 8.3 °C, respectively. Strikingly, the AI models achieved high levels of accuracy by solely inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective holistic modeling technology and software to streamline and advance 3DP as a significant technology within drug development. M3DISEEN is available at (http://m3diseen.com/predictions/).


Assuntos
Inteligência Artificial , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Excipientes , Humanos , Aprendizado de Máquina , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...