Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 81: 105332, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176449

RESUMO

Human aromatase, also called CYP19A1, plays a major role in the conversion of androgens into estrogens. Inhibition of aromatase is an important target for estrogen receptor (ER)-responsive breast cancer therapy. Use of azole compounds as aromatase inhibitors is widespread despite their low selectivity. A toxicological evaluation of commonly used azole-based drugs and agrochemicals with respect to CYP19A1 is currently requested by the European Union- Registration, Evaluation, Authorization and Restriction of Chemicals (EU-REACH) regulations due to their potential as endocrine disruptors. In this connection, identification of structural alerts (SAs) is an effective strategy for the toxicological assessment and safe drug design. The present study describes the identification of SAs of azole-based chemicals as guiding experts to predict the aromatase activity. Total 21 SAs associated with aromatase activity were extracted from dataset of 326 azole-based drugs/chemicals obtained from Tox21 library. A cross-validated classification model having high accuracy (error rate 5%) was proposed which can precisely classify azole chemicals into active/inactive toward aromatase. In addition, mechanistic details and toxicological properties (agonism/antagonism) of azoles with respect to aromatase were explored by comparing active and inactive chemicals using structure-activity relationships (SAR). Lastly, few structural alerts were applied to form chemical categories for read-across applications.


Assuntos
Aromatase , Azóis , Aromatase/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/toxicidade , Azóis/toxicidade , Citocromo P-450 CYP1A1 , Humanos , Receptores de Estrogênio , Relação Estrutura-Atividade
2.
Molecules ; 25(3)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046297

RESUMO

Aromatase is an enzyme member of the cytochrome P450 superfamily coded by the CYP19A1 gene. Its main action is the conversion of androgens into estrogens, transforming androstenedione into estrone and testosterone into estradiol. This enzyme is present in several tissues and it has a key role in the maintenance of the balance of androgens and estrogens, and therefore in the regulation of the endocrine system. With regard to chemical safety and human health, azoles, which are used as agrochemicals and pharmaceuticals, are potential endocrine disruptors due to their agonist or antagonist interactions with the human aromatase enzyme. This theoretical study investigated the active agonist and antagonist properties of "chemical classes of azoles" to determine the relationships of azole interaction with CYP19A1, using stereochemical and electronic properties of the molecules through classification and multilinear regression (MLR) modeling. The antagonist activities for the same substituent on diazoles and triazoles vary with its chemical composition and its position and both heterocyclic systems require aromatic substituents. The triazoles require the spherical shape and diazoles have to be in proper proportion of the branching index and the number of ring systems for the inhibition. Considering the electronic aspects, triazole antagonist activity depends on the electrophilicity index that originates from interelectronic exchange interaction (ωHF) and the LUMO energy ( E LUMO PM 7 ), and the diazole antagonist activity originates from the penultimate orbital ( E HOMONL PM 7 ) of diazoles. The regression models for agonist activity show that it is opposed by the static charges but favored by the delocalized charges on the diazoles and thiazoles. This study proposes that the electron penetration of azoles toward heme group decides the binding behavior and stereochemistry requirement for antagonist activity against CYP19A1 enzyme.


Assuntos
Inibidores da Aromatase/farmacologia , Aromatase/química , Azóis/farmacologia , Indutores das Enzimas do Citocromo P-450/farmacologia , Elétrons , Disruptores Endócrinos/farmacologia , Modelos Estatísticos , Aromatase/metabolismo , Inibidores da Aromatase/química , Azóis/química , Indutores das Enzimas do Citocromo P-450/química , Disruptores Endócrinos/química , Heme/química , Heme/metabolismo , Humanos , Modelos Químicos , Ligação Proteica , Teoria Quântica , Eletricidade Estática , Estereoisomerismo , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...