Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 16960-16967, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37410703

RESUMO

The resistance of an ordered 3D-Bi2Te3 nanowire nanonetwork was studied at low temperatures. Below 50 K the increase in resistance was found to be compatible with the Anderson model for localization, considering that conduction takes place in individual parallel channels across the whole sample. Angle-dependent magnetoresistance measurements showed a distinctive weak antilocalization characteristic with a double feature that we could associate with transport along two perpendicular directions, dictated by the spatial arrangement of the nanowires. The coherence length obtained from the Hikami-Larkin-Nagaoka model was about 700 nm across transversal nanowires, which corresponded to approximately 10 nanowire junctions. Along the individual nanowires, the coherence length was greatly reduced to about 100 nm. The observed localization effects could be the reason for the enhancement of the Seebeck coefficient observed in the 3D-Bi2Te3 nanowire nanonetwork compared to individual nanowires.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36558282

RESUMO

Recently, polymers have been attracted great attention because of their thermoelectric materials' excellent mechanical properties, specifically their cost-effectiveness and scalability at the industrial level. In this study, the electropolymerization conditions (applied potential and deposition time) of PEDOT films were investigated to improve their thermoelectric properties. The morphology and Raman spectroscopy of the PEDOT films were analyzed according to their applied potential and deposition time. The best thermoelectric properties were found in films grown at 1.3 V for 10 min, with an electrical conductivity of 158 ± 8 S/cm, a Seebeck coefficient of 33 ± 1 µV/K, and a power factor of 17 ± 2 µW/K·m2. This power factor value is three times higher than the value reported in the literature for electropolymerized PEDOT films in acetonitrile using lithium perchlorate as a counter-ion. The thermal conductivity was found to be (1.3 ± 0.3) × 10-1 W/m·K. The highest figure of merit obtained at room temperature was (3.9 ± 1.0) × 10-2 using lithium perchlorate as a counter-ion. In addition, three-dimensional (3D) PEDOT nanonetworks were electropolymerized inside 3D anodic aluminum oxide (3D AAO), obtaining lower values in their thermoelectric properties.

3.
Nanoscale ; 14(8): 3179-3190, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35142756

RESUMO

The use of metallic nanostructures in the fabrication of bioelectrodes (e.g., neural implants) is gaining attention nowadays. Nanostructures provide increased surface area that might benefit the performance of bioelectrodes. However, there is a need for comprehensive studies that assess electrochemical performance of nanostructured surfaces in physiological and relevant working conditions. Here, we introduce a versatile scalable fabrication method based on magnetron sputtering to develop analogous metallic nanocolumnar structures (NCs) and thin films (TFs) from Ti, Au, and Pt. We show that NCs contribute significantly to reduce the impedance of metallic surfaces. Charge storage capacity of Pt NCs is remarkably higher than that of Pt TFs and that of the other metals in both morphologies. Circuit simulations of the electrode/electrolyte interface show that the signal delivered in voltage-controlled systems is less filtered when nanocolumns are used. In a current-controlled system, simulation shows that NCs provide safer stimulation conditions compared to TFs. We have assessed the durability of NCs and TFs for potential use in vivo by reactive accelerated aging test, mimicking one-year in vivo implantation. Although each metal/morphology reveals a unique response to aging, NCs show overall more stable electrochemical properties compared to TFs in spite of their porous structure.

4.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616063

RESUMO

The 1D nanowire arrays and 3D nanowire networks of topological insulators and metals have been fabricated by template-assisted deposition of Bi2Te3 and Ni inside anodic aluminum oxide (AAO) templates, respectively. Despite the different origins of the plasmon capabilities of the two materials, the results indicate that the optical response is determined by plasmon resonances, whose position depends on the nanowire interactions and material properties. Due to the thermoelectric properties of Bi2Te3 nanowires, these plasmon resonances could be used to develop new ways of enhancing thermal gradients and their associated thermoelectric power.

5.
Nanoscale ; 13(4): 2227-2265, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480949

RESUMO

Anodic porous alumina, -AAO- (also known as nanoporous alumina, nanohole alumina arrays, -NAA- or nanoporous anodized alumina platforms, -NAAP-) has opened new opportunities in a wide range of fields, and is used as an advanced photonic structure for applications in structural coloration and advanced optical biosensing based on the ordered nanoporous structure obtained and as a template to grow nanowires or nanotubes of different materials giving rise to metamaterials with tailored properties. Therefore, understanding the structure of nanoporous anodic alumina templates and knowing how they are fabricated provide a tool for the further design of structures based on them, such as 3D nanoporous structures developed recently. In this work, we review the latest developments related to nanoporous alumina, which is currently a very active field, to provide a solid and thorough reference for all interested experts, both in academia and industry, on these nanostructured and highly useful structures. We present an overview of theories on the formation of pores and self-ordering in alumina, paying special attention to those presented in recent years, and different nanostructures that have been developed recently. Therefore, a wide variety of architectures, ranging from ordered nanoporous structures to diameter changing pores, branched pores, and 3D nanostructures will be discussed. Next, some of the most relevant results using different nanostructured morphologies as templates for the growth of different materials with novel properties and reduced dimensionality in magnetism, thermoelectricity, etc. will be summarised, showing how these structures have influenced the state of the art in a wide variety of fields. Finally, a review on how these anodic aluminium membranes are used as platforms for different applications combined with optical techniques, together with principles behind these applications will be presented, in addition to a hint on the future applications of these versatile nanomaterials. In summary, this review is focused on the most recent developments, without neglecting the basis and older studies that have led the way to these findings. Thus, it gives an updated state-of-the-art review that should be useful not only for experts in the field, but also for non-specialists, helping them to gain a broad understanding of the importance of anodic porous alumina, and most probably, endow them with new ideas for its use in fields of interest or even developing the anodization technique.

6.
ACS Appl Energy Mater ; 4(12): 13556-13566, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35647490

RESUMO

3D interconnected nanowire scaffoldings are shown to increase the thermoelectric efficiency in comparison to similar diameter 1D nanowires and films grown under similar electrodeposition conditions. Bi2Te3 3D nanonetworks offer a reduction in thermal conductivity (κT) while preserving the high electrical conductivity of the films. The reduction in κT is modeled using the hydrodynamic heat transport equation, and it can be understood as a heat viscosity effect due to the 3D nanostructuration. In addition, the Seebeck coefficient is twice that of nanowires and films, and up to 50% higher than in a single crystal. This increase is interpreted as a nonequilibrium effect that the geometry of the structure induces on the distribution function of the phonons, producing an enhanced phonon drag. These thermoelectric metamaterials have higher performance and are fabricated with large areas by a cost-effective method, which makes them suitable for up-scale production.

7.
Nanomaterials (Basel) ; 8(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783697

RESUMO

Self-standing Bi2Te3 networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi2Te3 interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi2Te3 networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.

8.
Sci Rep ; 6: 38595, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934930

RESUMO

Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m-1·K-1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

9.
Nat Commun ; 5: 5130, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25342247

RESUMO

Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.

10.
ACS Appl Mater Interfaces ; 5(1): 72-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23215033

RESUMO

Ordered anodic aluminum oxide (AAO) templates with pores <15 nm in diameter and an aspect ratio (length-to-diameter ratio) above 3 × 10(3) have been fabricated using a nonlithographic approach; specifically, by anodizing aluminum in an ethylene-glycol-containing sulfuric acid electrolyte. The pores are the smallest in diameter reported for a self-ordered AAO without pore aspect-ratio limitations and good ordering, which opens up the possibility of obtaining nanowire arrays in the quantum confinement regime that is of interest for efficient thermoelectric generators. The effect of the ethylene glycol addition on both the pore diameter and the ordering is evaluated and discussed. Moreover, 15-nm-diameter Bi(2)Te(3) and poly(3-hexyl thiophene) (P3HT) nanowires have been prepared using these AAO templates. As known, Bi(2)Te(3) is currently the most efficient thermoelectric bulk material for room-temperature operations and, according with theory, its Seebeck coefficient should be increased when it is confined to nanowires with diameters close to 10 nm. On the other hand, P3HT is one of the main candidates for integrating organic photovoltaic and thermoelectric devices, and its properties are also proposed to increase when it is confined to nanoscale structures, mainly due to molecular orientation effects.

11.
Appl Opt ; 49(32): 6340-7, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068866

RESUMO

We compare the filtering capabilities of two infrared fibers developed to achieve a high rejection ratio of the higher order modes in order to obtain compact modal filters devoted to stellar interferometry. Two types of double-clad fibers are studied: a fiber with a second thin absorbing cladding and a fiber with a second thick absorbing cladding closer to the fiber core; both are single mode around the CO(2) band (10.6 µm). We present the single-mode spectral domain and the nulling capabilities of both fibers for different fiber lengths, comparing simulations with experimental results. We show that the filtering capabilities are improved when the absorbing clad is closer to the fiber core, as the propagation distance needed to filter out these modes is shorter. Thus, to obtain high rejection ratios in compact devices, an absorbing cladding close to the core of the fiber is compulsory in order to suppress cladding modes that could eventually recouple into the waveguide. We present an empirical model that allows determining the minimum filter length, considering only one effective leaky mode with low attenuation, which considerably simplifies the theoretical studies.

12.
Opt Express ; 17(26): 24175-82, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20052128

RESUMO

Heavy mass ions, Kr and Xe, having energies in the approximately 10 MeV/amu range have been used to produce thick planar optical waveguides at the surface of lithium niobate (LiNbO3). The waveguides have a thickness of 40-50 micrometers, depending on ion energy and fluence, smooth profiles and refractive index jumps up to 0.04 (lambda = 633 nm). They propagate ordinary and extraordinary modes with low losses keeping a high nonlinear optical response (SHG) that makes them useful for many applications. Complementary RBS/C data provide consistent values for the partial amorphization and refractive index change at the surface. The proposed method is based on ion-induced damage caused by electronic excitation and essentially differs from the usual implantation technique using light ions (H and He) of MeV energies. It implies the generation of a buried low-index layer (acting as optical barrier), made up of amorphous nanotracks embedded into the crystalline lithium niobate crystal. An effective dielectric medium approach is developed to describe the index profiles of the waveguides. This first test demonstration could be extended to other crystalline materials and could be of great usefulness for mid-infrared applications.


Assuntos
Nióbio/química , Nióbio/efeitos da radiação , Dispositivos Ópticos , Óxidos/química , Óxidos/efeitos da radiação , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Íons Pesados , Luz , Teste de Materiais , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...