Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 2): 132547, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34653490

RESUMO

We present the first real attempt to directly and continuously measure GEM through a Lumex RA-915 M, designed for real-time detection of mercury vapor, mounted on an UAV (Unmanned Aerial Vehicle, namely a heavy-lift octocopter), inside and outside the former Hg-mining area of Abbadia San Salvatore (Mt. Amiata, Italy), known as a GEM source. We tested the effectiveness of the UAV-Lumex combination at different heights in selected sites pertaining to both mining facilities and surrounding urban zones, shedding light on the GEM spatial distribution and concentration variability. The Lumex great sensitivity and the octocopter optimal versatility and maneuverability, both horizontally and vertically, allowed to depict the GEM distribution in the atmosphere up to 60 m above the ground. The acquisition system was further optimized by: i) synchronizing Lumex and UAV GPS data by means of a stand-alone GPS that was previously synchronized with Lumex; ii) using a vertical sampling tube (1.20 m high) connected to the Lumex inlet to overcome the rotors strong airflows and turbulence that would have affected GEM measurements; iii) supplying the octocopter with batteries for power supply to avoid the release of exhaust gases; iv) taking the advantage of the UAV ability to land in small spaces and stop at selected altitudes. The resulting dot-map graphical representations, providing a realistic 3D picture of GEM vertical profiling during the flights in near real-time, were useful to verify whether the guideline concentrations indicated by competent authorities were exceeded. The results showed that the GEM concentrations in the urban area, located a few hundred meters from the mining structures, and close to already reclaimed areas remained at relatively low values. Contrarily, GEM contents showed significant variations and the highest concentrations above the facilities containing the old furnaces, where increasing GEM concentrations were recorded at decreasing heights or downwind.


Assuntos
Mercúrio , Atmosfera , Itália , Dispositivos Aéreos não Tripulados
2.
Sci Total Environ ; 698: 134245, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494422

RESUMO

In this study, the results of a continuous monitoring of (i) CO2 fluxes, and (ii) CO2 and CH4 concentrations and carbon isotopic ratios (δ13C-CO2 and δ13C-CH4) in air, carried out from 7 to 21 July 2017 and from October 10 to December 15, 2017 in the city centre of Florence, are presented. The measurements were performed from the roof of the historical building of the Ximenes Observatory. CO2 flux data revealed that the metropolitan area acted as a net source of CO2 during the whole observation period. According to the Keeling plot analysis, anthropogenic contributions to atmospheric CO2 were mainly represented by vehicular traffic (about 30%) and natural gas combustion (about 70%), the latter contributing 7 times more in December than in July. Moreover, the measured CO2 fluxes were about 80% higher in fall than in summer, confirming that domestic heating based on natural gas is the dominant CO2 emitting source in the municipality of Florence. Even though the continuous monitoring revealed a shift in the δ13C-CO2 values related to photosynthetic uptake of atmospheric CO2, the isotopic effect induced by plant activity was restricted to few hours in October and, to a lesser extent, in November. This suggests that urban planning policies should be devoted to massively increase green infrastructures in the metropolitan area in order to counterbalance anthropogenic emissions. During fall, the atmospheric CH4 concentrations were sensibly higher with respect to those recorded in summer, whilst the δ13C-CH4 values shifted towards heavier values. The Keeling plot analysis suggested that urban CH4 emissions were largely related to fugitive emissions from the natural gas distribution pipeline network. On the other hand, δ13C-CH4 monitoring allowed to recognize vehicular traffic as a minor CH4 emitting source.

3.
Sci Total Environ ; 655: 887-898, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30481715

RESUMO

Volcanic and hydrothermal areas largely contribute to the natural emission of greenhouse gases to the atmosphere, although large uncertainties in estimating their global output still remain. Nevertheless, CO2 and CH4 discharged from hydrothermal fluid reservoirs may support active soil microbial communities. Such secondary processes can control and reduce the flux of these gases to the atmosphere. In order to evaluate the effects deriving from the presence of microbial activity, chemical and carbon (in CO2 and CH4) isotopic composition of interstitial soil gases, as well as diffuse CO2 fluxes, of three hydrothermal systems from Italy were investigated, i.e. (i) Solfatara crater (Campi Flegrei), (ii) Monterotondo Marittimo (Larderello geothermal field) and (iii) Baia di Levante in Vulcano Island (Aeolian Archipelago), where soil CO2 fluxes up to 2400, 1920 and 346 g m-2 day-1 were measured, respectively. Despite the large supply of hydrothermal fluids, 13CO2 enrichments were observed in interstitial soil gases with respect to the fumarolic gas discharges, pointing to the occurrence of autotrophic CO2 fixation processes during the migration of deep-sourced fluids towards the soil-air interface. On the other hand, (i) the δ13C-CH4 values (up to ~48‰ vs. V-PDB higher than those measured at the fumarolic emissions) of the interstitial soil gases and (ii) the comparison of the CO2/CH4 ratios between soil gases and fumarolic emissions suggested that the deep-sourced CH4 was partly consumed by methanotrophic activity, as supported by isotope fractionation modeling. These findings confirmed the key role that methanotrophs play in mitigating the release of geogenic greenhouse gases from volcanic and hydrothermal environments.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Gases de Efeito Estufa/análise , Fontes Termais/química , Solo/química , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Itália , Metano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...