Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835562

RESUMO

Intensity modulated radiation therapy (IMRT) is one of the most used techniques for cancer treatment. Using a linear accelerator, it delivers radiation directly at the cancerogenic cells in the tumour, reducing the impact of the radiation on the organs surrounding the tumour. The complexity of the IMRT problem forces researchers to subdivide it into three sub-problems that are addressed sequentially. Using this sequential approach, we first need to find a beam angle configuration that will be the set of irradiation points (beam angles) over which the tumour radiation is delivered. This first problem is called the Beam Angle Optimisation (BAO) problem. Then, we must optimise the radiation intensity delivered from each angle to the tumour. This second problem is called the Fluence Map Optimisation (FMO) problem. Finally, we need to generate a set of apertures for each beam angle, making the intensities computed in the previous step deliverable. This third problem is called the Sequencing problem. Solving these three sub-problems sequentially allows clinicians to obtain a treatment plan that can be delivered from a physical point of view. However, the obtained treatment plans generally have too many apertures, resulting in long delivery times. One strategy to avoid this problem is the Direct Aperture Optimisation (DAO) problem. In the DAO problem, the idea is to merge the FMO and the Sequencing problem. Hence, optimising the radiation's intensities considers the physical constraints of the delivery process. The DAO problem is usually modelled as a Mixed-Integer optimisation problem and aims to determine the aperture shapes and their corresponding radiation intensities, considering the physical constraints imposed by the Multi-Leaf Collimator device. In solving the DAO problem, generating clinically acceptable treatments without additional sequencing steps to deliver to the patients is possible. In this work, we propose to solve the DAO problem using the well-known Particle Swarm Optimisation (PSO) algorithm. Our approach integrates the use of mathematical programming to optimise the intensities and utilizes PSO to optimise the aperture shapes. Additionally, we introduce a reparation heuristic to enhance aperture shapes with minimal impact on the treatment plan. We apply our proposed algorithm to prostate cancer cases and compare our results with those obtained in the sequential approach. Results show that the PSO obtains competitive results compared to the sequential approach, receiving less radiation time (beam on time) and using the available apertures with major efficiency.

2.
Entropy (Basel) ; 21(2)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33266868

RESUMO

Discriminative feature extraction and rolling element bearing failure diagnostics are very important to ensure the reliability of rotating machines. Therefore, in this paper, we propose multi-scale wavelet Shannon entropy as a discriminative fault feature to improve the diagnosis accuracy of bearing fault under variable work conditions. To compute the multi-scale wavelet entropy, we consider integrating stationary wavelet packet transform with both dispersion (SWPDE) and permutation (SWPPE) entropies. The multi-scale entropy features extracted by our proposed methods are then passed on to the kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. In the end, both the SWPDE-KELM and the SWPPE-KELM methods are evaluated on two bearing vibration signal databases. We compare these two feature extraction methods to a recently proposed method called stationary wavelet packet singular value entropy (SWPSVE). Based on our results, we can say that the diagnosis accuracy obtained by the SWPDE-KELM method is slightly better than the SWPPE-KELM method and they both significantly outperform the SWPSVE-KELM method.

3.
Entropy (Basel) ; 21(6)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267254

RESUMO

Bearing fault diagnosis methods play an important role in rotating machine health monitoring. In recent years, various intelligent fault diagnosis methods have been proposed, which are mainly based on the features extraction method combined with either shallow or deep learning methods. During the last few years, Shannon entropy features have been widely used in machine health monitoring, improving the accuracy of the bearing fault diagnosis process. Therefore, in this paper, we consider the combination of multi-scale stationary wavelet packet analysis with the Fourier amplitude spectrum to obtain a new discriminative Shannon entropy feature that we call stationary wavelet packet Fourier entropy (SWPFE). Features extracted by our SWPFE method are then passed onto a shallow kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. The proposed method was applied on two experimental vibration signal databases of a rolling element bearing and compared to two recently proposed methods called stationary wavelet packet permutation entropy (SWPPE) and stationary wavelet packet dispersion entropy (SWPPE). Based on our results, we can say that the proposed method is able to achieve better accuracy levels than both the SWPPE and SWPDE methods using fewer failure features. Further, as our method does not require any hyperparameter calibration step, it is less dependent on user experience/expertise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...