Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 250(3): 327-333, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28623474

RESUMO

Epithelial fluid transport, an important physiological process shrouded in a long-standing enigma, may finally be moving closer to a solution. We propose that, for the corneal endothelium, relative proportions for the driving forces for fluid transport are 80% of paracellular electro-osmosis, and 20% classical transcellular osmosis. These operate in a cyclical process with a period of 9.2 s, which is dictated by the decrease and exhaustion of cellular Na+. Paracellular electro-osmosis is sketched here, and partially discussed as much as the subject still allows; transcellular osmosis is presented at length.


Assuntos
Osmose/fisiologia , Transporte Biológico/fisiologia , Transporte Biológico Ativo/fisiologia , Endotélio Corneano/metabolismo , Modelos Teóricos , Sódio/metabolismo
2.
Cell Physiol Biochem ; 33(6): 1745-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24923359

RESUMO

BACKGROUND/AIMS: we have investigated whether cultured cardiomyocytes of the cell line HL-1 have the ability to perform regulatory volume responses both in hypotonic and hypertonic conditions. Furthermore, we characterized those regulatory responses and studied the effects of bumetanide and DIDS in volume regulation of HL-1 cells. METHODS: we used a light scattering system to measure the transient volume changes of HL-1 cells when subjected to osmotic challenge. RESULTS: We found that HL-1 cells correct for their volume excess by undergoing regulatory volume decrease (RVD), and also respond to hypertonic stress with a regulatory volume increase (RVI). Rate of RVD was 0.08 ± 0.04 intensity/min, and rate of RVI was 0.09 ± 0.01 intensity/min. Volume recovery was 83.68 ± 5.73 % for RVD and 92.3 ± 2.3 % for RVI. Bumetanide 50 µM inhibited volume recovery, from 92.3 ± 2.3 % (control) to 24.6 ± 8.8 % and reduced the rate of RVI from 0.070 ± 0.020 intensity/min (control) to 0.010 ± 0.005 intensity/min. 50 µM DIDS reduced volume recovery to 42.93 ± 7.7 % and rate of RVI, to 0.03 ± 0.01 intensity/min. CONCLUSIONS: these results suggest that bumetanide- and DIDS-sensitive mechanisms are involved in the RVI of HL-1 cells, which points to the involvement of the Na(+)/K(+)/2Cl(-) cotransporter and Cl(-)/bicarbonate exchanger in RVI, respectively.


Assuntos
Tamanho Celular/efeitos dos fármacos , Soluções Hipertônicas/farmacologia , Soluções Hipotônicas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Bumetanida/farmacologia , Linhagem Celular , Diuréticos/farmacologia , Camundongos , Miócitos Cardíacos/citologia , Osmose/efeitos dos fármacos , Fatores de Tempo
3.
J Membr Biol ; 242(1): 41-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21713417

RESUMO

Layers of rabbit corneal endothelial cells were cultured on permeable inserts. We characterized the diffusional permeability of the cell layer to nonelectrolyte and charged molecules and compared the diffusional and filtration permeabilities of the paracellular and transcellular pathways. We determined the rates of diffusion of (3)H- and (14)C-labeled nonelectrolyte test molecules and estimated the equivalent pore radius of the tight junction. Negatively charged molecules permeate slower than neutral molecules, while positively charged molecules permeate faster. Palmitoyl-DL-carnitine, which opens tight junctions, caused an increase of permeability and equivalent pore radius. Diffusional water permeability was determined with (3)H-labeled water; the permeabilities of the tight junction and lateral intercellular space were calculated using tissue geometry and the Renkin equation. The diffusional permeability (P(d)) of the paracellular pathway to water is 0.57 µm s(-1) and that of the transcellular path is 2.52 µm s(-1). From the P(d) data we calculated the filtration permeabilities (P(f)) for the paracellular and transcellular pathways as 41.3 and 30.2 µm s(-1), respectively. In conclusion, the movement of hydrophilic molecules through tight junctions corresponds to diffusion through negatively charged pores (r = 2.1 ± 0.35 nm). The paracellular water permeability represents 58% of the filtration permeability of the layer, which points to that route as the site of sizable water transport. In addition, we calculated for NaCl a reflection coefficient of 0.16 ≤ σ(NaCl) ≤ 0.33, which militates against osmosis through the junctions and, hence, indirectly supports the electro-osmosis hypothesis.


Assuntos
Endotélio Corneano/metabolismo , Animais , Transporte Biológico/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Endotélio Corneano/citologia , Osmose , Coelhos , Junções Íntimas/metabolismo , Transcitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...