Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Ultrasonics ; 101: 105986, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31539763

RESUMO

The Homodyned K distribution has been used successfully as a tool in the ultrasound characterization of sparse media, where the scatterer clustering parameter α accurately discriminates between media with different numbers of scatterers per resolution cell. However, as the number of scatterers increases and the corresponding amplitude statistics become Rician, the reliability of the α estimates decreases rapidly. In the present study, we assess the usefulness of α for the characterization of both sparse and concentrated media, using simulated independent and identically distributed (i.i.d.) samples from Homodyned K distributions, ultrasound images of media with up to 68 scatterers per resolution cell and ultrasound signals acquired from particle phantoms with up to 101 scatterers per resolution cell. All parameter estimates are obtained using the XU estimator (Destrempes et al., 2013). Results suggest that the parameter α can be used to distinguish between media with up to 40 scatterers per resolution cell at 22 MHz, provided that parameter estimation can be performed on very large sample sizes (i.e., >10,000 i.i.d. samples).

2.
Artigo em Inglês | MEDLINE | ID: mdl-30273149

RESUMO

Ultrasound (US) cavitation is currently being explored for low-invasive therapy techniques applied to a wide panel of pathologies. Because of the random behavior of cavitation, a real-time spatial monitoring system may be required. For this purpose, the US passive imaging techniques have been recently investigated. In particular, the passive acoustic mapping (PAM) beamforming method enables the reconstruction of cavitation activity maps by beamforming acoustic signals passively recorded by an array transducer. In this paper, an optimized version of PAM, PAM weighted with a phase coherence factor (PAM-PCF), is considered. A general validation process is developed including simulations on a point source and experiments on a wire. Furthermore, using a focused regulated US-induced cavitation generator, reproducible cavitation experiments are conducted in water and in agar gel. The spatial behavior of a bubble cavitation cloud is determined using the PAM-PCF beamforming method to localize the focal cavitation point in two perpendicular imaging planes.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ágar , Desenho de Equipamento , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Microbolhas , Imagens de Fantasmas , Transdutores
3.
Artigo em Inglês | MEDLINE | ID: mdl-29856720

RESUMO

The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband. The resolution enhancement compression (REC) is a coding technique that boosts the signal energy in the transition frequency bands, where the energy transduction of the ultrasound probe is less efficient. Consequently, image quality metrics including axial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) can be improved. In this paper, the objective is to combine REC with coherent plane-wave compounding (CPWC) in order to achieve better image quality at an ultrafast acquisition rate. Promising results are obtained from both wire and cyst phantoms using an excitation signal designed to provide a 54% increase in bandwidth over the one obtained with a broadband pulse excitation at -6 dB. The experimental bandwidth measured from the backscattered echoes was improved by 49% for the wire phantom, when using the CPWC-REC technique compared to CPWC-CP. Furthermore, the axial resolution as derived from the modulation transfer function of the envelope of the wire target was enhanced by 29%. The CNR and SNR were improved up to 9 and up to 4 dB, respectively, in the cyst phantom. These results reveal that CPWC-REC is able to achieve higher spatial resolution, compared to CPWC-CP, with better SNR and CNR. Moreover, experimental results show that an effective implementation on a research scanner of REC using plane-wave imaging is possible. Consistent in vivo acquisition results on rabbit are presented and discussed.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Animais , Vesícula Biliar/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Coelhos , Ultrassonografia
4.
Sci Rep ; 8(1): 9108, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904182

RESUMO

Three dimensional ultrasound (3-D US) imaging methods based on 2-D array probes are increasingly investigated. However, the experimental test of new 3-D US approaches is contrasted by the need of controlling very large numbers of probe elements. Although this problem may be overcome by the use of 2-D sparse arrays, just a few experimental results have so far corroborated the validity of this approach. In this paper, we experimentally compare the performance of a fully wired 1024-element (32 × 32) array, assumed as reference, to that of a 256-element random and of an "optimized" 2-D sparse array, in both focused and compounded diverging wave (DW) transmission modes. The experimental results in 3-D focused mode show that the resolution and contrast produced by the optimized sparse array are close to those of the full array while using 25% of elements. Furthermore, the experimental results in 3-D DW mode and 3-D focused mode are also compared for the first time and they show that both the contrast and the resolution performance are higher when using the 3-D DW at volume rates up to 90/second which represent a 36x speed up factor compared to the focused mode.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28358681

RESUMO

Medical systems usually consider linear propagation of ultrasound, an approximation of reality. However, numerous studies have attempted to accurately simulate the nonlinear pressure wave distortion and to evaluate the contribution of harmonic frequencies. In such simulations, the computation time is very large, except for the method based on the angular spectrum scheme where the derivative order is reduced using the Fourier transform. However, the harmonic computation is usually limited to the second harmonic because of quasi-linear approximation. In this paper, a slowly varying envelope approximation (SVEA) is used in the Fourier domain to compute the entire nonlinear distortion induced, including high harmonics and nonlinear mixing frequencies. The simulation by SVEA is evaluated by comparison with other simulation tools. The obtained deviation and difference remain low enough to fully validate such an approximation. Moreover, the simulator is implemented on a GPU to obtain a very fast tool, where the full nonlinear distorted [Formula: see text] field is computed in less than 10 s.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28092506

RESUMO

Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the N e elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a 32 ×32 array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array.

7.
Ultrasonics ; 73: 206-220, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27668998

RESUMO

This article compares four different biopsy needle localization algorithms in both 3D and 4D situations to evaluate their accuracy and execution time. The localization algorithms were: Principle component analysis (PCA), random Hough transform (RHT), parallel integral projection (PIP) and ROI-RK (ROI based RANSAC and Kalman filter). To enhance the contrast of the biopsy needle and background tissue, a line filtering pre-processing step was implemented. To make the PCA, RHT and PIP algorithms comparable with the ROI-RK method, a region of interest (ROI) strategy was added. Simulated and ex-vivo data were used to evaluate the performance of the different biopsy needle localization algorithms. The resolutions of the sectorial and cylindrical volumes were 0.3mm×0.4mm×0.6mmand0.1mm×0.1mm×0.2mm (axial×lateral×azimuthal) respectively. In so far as the simulation and experimental results show, the ROI-RK method successfully located and tracked the biopsy needle in both 3D and 4D situations. The tip localization error was within 1.5mm and the axis accuracy was within 1.6mm. To the best of our knowledge, considering both localization accuracy and execution time, the ROI-RK was the most stable and time-saving method. Normally, accuracy comes at the expense of time. However, the ROI-RK method was able to locate the biopsy needle with high accuracy in real time, which makes it a promising method for clinical applications.


Assuntos
Algoritmos , Biópsia por Agulha , Biópsia Guiada por Imagem , Imageamento Tridimensional , Ultrassonografia de Intervenção/métodos , Análise de Componente Principal
8.
Artigo em Inglês | MEDLINE | ID: mdl-27913329

RESUMO

Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points, and depths, as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of SA allow the duration of the optimization process to be set in advance.


Assuntos
Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Algoritmos , Modelos Teóricos , Transdutores
9.
Artigo em Inglês | MEDLINE | ID: mdl-27305672

RESUMO

There are several simulators for medical ultrasound (US) applications that can fully compute the nonlinear propagation on the transmitted pulse and the corresponding radio-frequency (RF) images. Creanuis is one recent model used to generate nonlinear RF images; however, the time requirements are long compared with linear models using a convolution strategy. In this paper, we describe an approach using convolution coupled with nonlinear information to create a pseudoacoustic tool that is able to quickly generate realistic US images. Several point-spread functions (PSFs) are computed with Creanuis. These PSFs are extracted at different depths in order to take into account variation in the resolution and apparition of harmonics during propagation. One convolution is then conducted for each PSF to generate a set of nonlinear raw RF images. The final image is obtained by merging these raw images using a PSF-weighting function. This hybrid Creanuis strategy was extended to 2-D, 2-D +t , 3-D, and 3-D +t images for both linear and phased-array geometries. We validated h-Creanuis using the mean deviation between the proposed images and those created using Creanuis and examined their statistical distributions. The mean deviations of Creanuis and h-Creanuis are below 2.5% for fundamental and second-harmonic images. The 3-D +t images obtained demonstrate the correct motion characteristics for speckle in sequences of both fundamental and second-harmonic images.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26670852

RESUMO

Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Oscilometria/métodos , Ultrassonografia Doppler/métodos , Algoritmos , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Cardiovasculares , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia Doppler/instrumentação
11.
Ultrason Imaging ; 37(4): 294-311, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25628094

RESUMO

To increase the contrast-to-tissue ratio (CTR) in contrast imaging or the signal-to-noise ratio (SNR) in tissue harmonic imaging, many multipulse transmission techniques have been suggested. This article first recalls the various imaging techniques proposed in the literature and then presents a mathematical background to synthesize and generalize most of the multipulse ultrasound imaging techniques. The formulation presented can be used to predict the relative amplitude of the nonlinear components in each frequency band and to design new transmission sequences to either increase or decrease specified nonlinear components in each harmonic band. Simulation results on several multipulse techniques agree with the results from previous studies.


Assuntos
Meios de Contraste , Aumento da Imagem/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
12.
Ultrasonics ; 56: 390-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25262843

RESUMO

In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson's multitaper approach.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1560-3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736570

RESUMO

Ultrasound attenuation is typically compensated for in clinical scanners by using time gain compensation (TGC). However, TGC operates in a frequency-independent fashion and therefore the spatial resolution of the echographic images degrades as the examination depth increases. In the current study, the capability of a multi-band attenuation compensation (MBAC) TGC technique to recover both magnitude and spatial resolution in lossy media was evaluated. Simulations were performed using a 5-MHz transducer for imaging point targets embedded in a medium with attenuation coefficient slope (ACS) of 0.5 dB/(cm.MHz). For performance assessment, the magnitude and spatial resolution of the reflected point spread functions (PSFs) were compared to the ones obtained from point targets embedded in a lossless medium. The results showed a complete recovery of the spectral content when using MBAC for all depths when compared to the lossless case. Both the magnitude and spatial resolution of the compensated PSFs were in agreement with the lossless result (i.e., less than 1 dB and 3 % difference in PSF magnitude and spatial resolution, respectively). The MBAC was then applied to in vivo liver imaging using a scanner equipped with a 5-MHz linear array. Attenuation compensation was performed using ACSs reported in the literature for skin, fat and muscle, and experimentally estimated ACS using the spectral log difference technique for the liver. The lateral and axial extent of the autocorrelation function was estimated in the liver tissue. The experimental MBAC image exhibited only 6 % and 11 % variation in speckle magnitude and lateral autocorrelation length for depths between 2.5 and 4 cm. These results suggest that MBAC technique may enhance speckle uniformity in homogeneous tissue regions.


Assuntos
Ultrassonografia , Fígado , Imagens de Fantasmas , Transdutores
14.
Artigo em Inglês | MEDLINE | ID: mdl-25389161

RESUMO

Quantitative ultrasound (QUS) based on backscatter coefficient (BSC) estimation has shown potential for tissue characterization. Beamforming using plane wave compounding has advantages for echographic, Doppler, and elastographic imaging; however, to date, plane wave compounding has not been experimentally evaluated for the purpose of BSC estimation. In this study, two BSC-derived parameters (i.e., the BSC midband fit and intercept) were estimated from experimental data obtained using compound plane wave beamforming. For comparison, QUS parameters were also estimated from data obtained using both fixed focus and dynamic receive beamforming. An ultrasound imaging system equipped with a 9-MHz center frequency, 64-element array was used to collect data up to a depth of 45 mm. Two gelatin phantoms with randomly distributed 20-µm inclusions with a homogeneous scatterer concentration and a two-region scatterer concentration were used for assessing the precision and lateral resolution of QUS imaging, respectively. The use of plane wave compounding resulted in accurate QUS estimation (i.e., bias in the BSC parameters of less than 2 dB) and relatively constant lateral resolution (i.e., BSC midband fit 10% to 90% rise distance ranging between 1.0 and 1.5 mm) throughout a 45 mm field of view. Although both fixed focus and dynamic receive beamforming provided the same performance around the focal depth, the reduction in SNR away from the focus resulted in a reduced field of view in the homogeneous phantom (i.e., only 28 mm). The lateral resolution also degraded away from the focus, with up to a 2-fold and 10-fold increase in the rise distance at 20 mm beyond the focal depth for dynamic receive and fixed focus beamforming, respectively. These results suggest that plane wave compounding has the potential to improve the performance of spectral-based quantitative ultrasound over other conventional beamforming strategies.

15.
Artigo em Inglês | MEDLINE | ID: mdl-25167150

RESUMO

Conventional ultrasound Doppler techniques estimate the blood velocity exclusively in the axial direction to produce the sonograms and color flow maps needed for diagnosis of cardiovascular diseases. In this paper, a novel method to produce bi-dimensional maps of 2-D velocity vectors is proposed. The region of interest (ROI) is illuminated by plane waves transmitted at the pulse repetition frequency (PRF) in a fixed direction. For each transmitted plane wave, the backscattered echoes are recombined offline to produce the radio-frequency image of the ROI. The local 2-D phase shifts between consecutive speckle images are efficiently estimated in the frequency domain, to produce vector maps up to 15 kHz PRF. Simulations and in vitro steady-flow experiments with different setup conditions have been conducted to thoroughly evaluate the method's performance. Bias is proved to be lower than 10% in most simulations and lower than 20% in experiments. Further simulations and in vivo experiments have been made to test the approach's feasibility in pulsatile flow conditions. It has been estimated that the computation of the frequency domain algorithm is more than 50 times faster than the computation of the reference 2-D cross-correlation algorithm.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Aumento da Imagem/métodos , Ultrassonografia Doppler/métodos , Adulto , Algoritmos , Artéria Carótida Primitiva/diagnóstico por imagem , Simulação por Computador , Humanos , Veias Jugulares/diagnóstico por imagem
16.
Comput Biol Med ; 43(12): 2036-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24290919

RESUMO

We present a method for automatic surgical tool localization in 3D ultrasound images based on line filtering, voxel classification and model fitting. This could possibly provide assistance for biopsy needle or micro-electrode insertion, or a robotic system performing this insertion. The line-filtering method is first used to enhance the contrast of the 3D ultrasound image, then a classifier is chosen to separate the tool voxels, in order to reduce the number of outliers. The last step is Random Sample Consensus (RANSAC) model fitting. Experimental results on several different polyvinyl alcohol (PVA) cryogel data sets demonstrate that the failure rate of the method proposed herein is improved by at least 86% compared to the model-fitting RANSAC algorithm with axis accuracy better than 1mm, at the expense of only a modest increase in computational effort. The results of this experiment show that this system could be useful for clinical applications.


Assuntos
Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-24081255

RESUMO

In ultrasound contrast imaging, many techniques based on multiple transmissions have been proposed to increase the contrast-to-tissue ratio (CTR). They are generally based on the response of static scatterers inside the imaged region. However, scatterer motion, for example in blood vessels, has an inevitable influence on multi-pulse techniques, which can either enhance or degrade the technique involved. This paper investigates the response of static nonlinear media insonated by multi-pulses with various phase shifts, and the influence of scatterer motion on multi-pulse techniques. Simulations and experimental results from a single bubble and clouds of bubbles show that the phase shift of the echoes backscattered from bubbles is dependent on the transmissions' phase shift, and that the bubble motion influences the efficiency of multi-pulse techniques: fundamental and second-harmonic amplitudes of the processed signal change periodically, exhibiting maximum or minimum values, according to scatterer motion. Furthermore, experimental results based on the second-harmonic inversion (SHI) technique reveal that bubble motion can be taken into account to regulate the pulse repetition frequency (PRF). With the optimal PRF, the CTR of SHI images can be improved by about 12 dB compared with second-harmonic images.


Assuntos
Meios de Contraste/química , Microbolhas , Movimento (Física) , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Vasos Sanguíneos/diagnóstico por imagem , Simulação por Computador , Humanos , Modelos Biológicos , Imagens de Fantasmas , Fluxo Sanguíneo Regional/fisiologia
18.
Ultrason Imaging ; 35(4): 283-306, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24081726

RESUMO

This article proposes a robust technique for needle detection and tracking using three-dimensional ultrasound (3D US). It is difficult for radiologists to detect and follow the position of micro tools, such as biopsy needles, that are inserted in human tissues under 3D US guidance. To overcome this difficulty, we propose a method that automatically reduces the processed volume to a limited region of interest (ROI), increasing at the same time the calculation speed and the robustness of the proposed technique. First, a line filter method that enhances the contrast of the needle against the background is used to facilitate the initialization of ROI using the tubularness information of the complete US volume. Then, the random sample consensus (RANSAC) and Kalman filter (RK) algorithm is used in the ROI to detect and track the precise position of the needle. A series of numerical inhomogeneous phantoms with a needle simulated from real 3D US volumes are used to evaluate our method. The results show that the proposed method is much more robust than the RANSAC algorithm when detecting the needle, regardless of whether or not the insertion axis corresponds to an acquisition plane in the 3D US volume. The possibility of failure is also discussed in this article.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Ultrassonografia de Intervenção/métodos , Biópsia por Agulha/métodos , Humanos , Imagens de Fantasmas
19.
Ultrasound Med Biol ; 39(10): 1915-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23859896

RESUMO

Nonlinear ultrasound methods are widely used in clinical applications for tissue or contrast harmonic imaging. Accurate non-linear imaging simulation tools are required in research studies for the development of new methods. However, in existing simulators, the possible inhomogeneity of the coefficient of non-linearity, which is generally observed in tissue and in particular when contrast agents are involved, has not yet been implemented. This article describes a new ultrasound simulator, called CREANUIS, devoted to the computation of B-mode images where both linear and non-linear propagation in media is considered, with a possible inhomogeneous coefficient of non-linearity. The resulting fundamental images, based on a spatially variant and non-linear point spread function, are in accordance with those obtained through the reference linear FieldII simulator, with computation time reduced by a factor of at least 1.8. Non-linear images of media exhibiting inhomogeneous coefficients of non-linearity are also provided. The simulation software can be freely downloaded from our website.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Simulação por Computador , Desenho Assistido por Computador , Humanos , Aumento da Imagem/métodos , Dinâmica não Linear , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
IEEE Trans Biomed Eng ; 60(11): 3093-102, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23771307

RESUMO

Three-dimensional imaging with 2-D matrix probes is one of the most exciting recent ultrasound innovations. Unfortunately, the number of elements of a 2-D matrix probe is often very high, and reducing this number deteriorates the beam properties. In this paper, we propose a new sparse-array design technique with irregular element positioning, which significantly reduces the number of active elements as well as the grating-lobe level. In particular, we introduce a new cost function for optimizing the weighting coefficients of the elements and a new annealing-based algorithm to compute the lowest cost solutions. Numerical simulations show substantial improvements over standard sparse arrays.


Assuntos
Imageamento Tridimensional/métodos , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Algoritmos , Simulação por Computador , Modelos Biológicos , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...