Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 288(12): 8405-8418, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23335509

RESUMO

The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.


Assuntos
Antineoplásicos/farmacologia , Microdomínios da Membrana/metabolismo , Éteres Fosfolipídicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Antineoplásicos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Microdomínios da Membrana/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Éteres Fosfolipídicos/metabolismo , Transporte Proteico , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
J Biol Chem ; 280(45): 38047-58, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16155007

RESUMO

Edelfosine is a prototypical member of the alkylphosphocholine class of antitumor drugs. Saccharomyces cerevisiae was used to screen for genes that modulate edelfosine cytotoxicity and identified sterol and sphingolipid pathways as relevant regulators. Edelfosine addition to yeast resulted in the selective partitioning of the essential plasma membrane protein Pma1p out of lipid rafts. Microscopic analysis revealed that Pma1p moved from the plasma membrane to intracellular punctate regions and finally localized to the vacuole. Consistent with altered sterol and sphingolipid synthesis resulting in increased edelfosine sensitivity, mislocalization of Pma1p was preceded by the movement of sterols out of the plasma membrane. Cells with enfeebled endocytosis and vacuolar protease activities prevented edelfosine-mediated (i) mobilization of sterols, (ii) loss of Pma1p from lipid rafts, and (iii) cell death. The activities of proteins and signaling processes are meaningfully altered by changes in lipid raft biophysical properties. This study points to a novel mode of action for an anti-cancer drug through modification of plasma membrane lipid composition resulting in the displacement of an essential protein from lipid rafts.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Éteres Fosfolipídicos/farmacologia , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Mutação , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/biossíntese , Esfingolipídeos/metabolismo , Esteróis/biossíntese , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...