Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 41013, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112195

RESUMO

Aviation and space applications can benefit significantly from lightweight organic electronics, now spanning from displays to logics, because of the vital importance of minimising payload (size and mass). It is thus crucial to assess the damage caused to such materials by cosmic rays and neutrons, which pose a variety of hazards through atomic displacements following neutron-nucleus collisions. Here we report the first study of the neutron radiation tolerance of two poly(thiophene)s-based organic semiconductors: poly(3-hexylthiophene-2,5-diyl), P3HT, and the liquid-crystalline poly(2,5-bis (3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT. We combine spectroscopic investigations with characterisation of intrinsic charge mobility to show that PBTTT exhibits significantly higher tolerance than P3HT. We explain this in terms of a superior chemical, structural and conformational stability of PBTTT, which can be ascribed to its higher crystallinity, in turn induced by a combination of molecular design features. Our approach can be used to develop design strategies for better neutron radiation-tolerant materials, thus paving the way for organic semiconductors to enter avionics and space applications.

2.
Sci Rep ; 6: 34609, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698410

RESUMO

Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

3.
Opt Lett ; 39(13): 3876-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978760

RESUMO

We present a newly designed polymer light-emitting diode with a bandwidth of ~350 kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10 Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted.

4.
Phys Chem Chem Phys ; 13(32): 14302-10, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21695318

RESUMO

Responsive monolayers are key building blocks for future applications in organic and molecular electronics in particular because they hold potential for tuning the physico-chemical properties of interfaces, including their energetics. Here we study a photochromic SAM based on a conjugated azobenzene derivative and its influence on the gold work function (Φ(Au)) when chemisorbed on its surface. In particular we show that the Φ(Au) can be modulated with external stimuli by controlling the azobenzene trans/cis isomerization process. This phenomenon is characterized experimentally by four different techniques, kelvin probe, kelvin probe force microscopy, electroabsorption spectroscopy and ultraviolet photoelectron spectroscopy. The use of different techniques implies exposing the SAM to different measurement conditions and different preparation methods, which, remarkably, do not alter the observed work function change (Φ(trans)-Φ(cis)). Theoretical calculations provided a complementary insight crucial to attain a deeper knowledge on the origin of the work function photo-modulation.


Assuntos
Compostos Azo/química , Ouro/química , Membranas Artificiais , Teoria Quântica , Compostos Azo/síntese química , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Estereoisomerismo , Propriedades de Superfície
5.
Ultramicroscopy ; 100(3-4): 449-55, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15231338

RESUMO

We report our investigations into the fabrication of nanostructures of poly(p-phenylene vinylene) via direct scanning near-field lithography of its soluble precursor. Our technique is based on the spatially selective inhibition of the precursor solubility by exposure to the ultraviolet optical field present at the apex of commercially available, Au-coated near-field probes with aperture diameters between 40 and 80 nm (+/-5 nm). After development in methanol and thermal conversion under vacuum we obtain features with a minimum dimension of 160 nm. We analyse our results via tapping-mode atomic force microscopy, and find a clear phase contrast between the core and the centre of the lithographed features, corroborating the hypothesis that hard, fully insolubilised regions are surrounded by a gel-like phase, which we estimate of the order of 110-130 nm for the smallest features, by comparing our experiments with simulations carried out using a Bethe-Bouwkamp model. Use of such model also allows us to discuss the influence of probe size, tip-sample distance, and film thickness on the resolution of the lithographic process. We demonstrate the use of the technique for the direct writing of two-dimensional periodic structures with intentional defects and a periodicity relevant to applications in the visible range.

6.
Chem Commun (Camb) ; (18): 1778-9, 2001 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-12240311

RESUMO

A block copolymer of distyrylbenzene with sexi(ethylene oxide) spacers displays high solid state photoluminescence efficiency (34%). Single layer light-emitting diodes with calcium or aluminium cathodes exhibit luminances over 2000 cd m-2 and efficiencies of 0.5 cd A-1.

7.
Nature ; 404(6777): 481-4, 2000 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-10761912

RESUMO

Achieving balanced electron-hole injection and perfect recombination of the charge carriers is central to the design of efficient polymer light-emitting diodes (LEDs). A number of approaches have focused on modification of the injection contacts, for example by incorporating an additional conducting-polymer layer at the indium-tin oxide (ITO) anode. Recently, the layer-by-layer polyelectrolyte deposition route has been developed for the fabrication of ultrathin polymer layers. Using this route, we previously incorporated ultrathin (<100 A) charge-injection interfacial layers in polymer LEDs. Here we show how molecular-scale engineering of these interlayers to form stepped and graded electronic profiles can lead to remarkably efficient single-layer polymer LEDs. These devices exhibit nearly balanced injection, near-perfect recombination, and greatly reduced pre-turn-on leakage currents. A green-emitting LED comprising a poly(p-phenylene vinylene) derivative sandwiched between a calcium cathode and the modified ITO anode yields an external forward efficiency of 6.0 per cent (estimated internal efficiency, 15-20 per cent) at a luminance of 1,600 candelas per m2 at 5 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...