Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1219087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670769

RESUMO

Background: Explosive and fast body movements, sprints, jumps and quick changes of direction, which are characteristic of the football training, place considerable strain on the hamstring muscles. Due to the high occurrence of hamstring injuries, new preventive strategies are required that focus on high-velocity training. The purpose was to assess the effectiveness of high-velocity elastic-band training in reducing the occurrence of hamstring injuries in football players. Methods: Male football players from 15 teams (n = 319) playing in national competitions participated in this study. The players were involved in a 5-week exercise period in either the intervention group (INT) or the control group (CON), with a follow-up period of ∼4 months where hamstring injuries and exposure time were recorded. The INT group had two to three sessions per week of elastic-band training with low-load, high-velocity leg curls while lying prone; the CON group performed self-paced football-specific drills. Results: The incidence rate of hamstring injuries was 6.5% in the INT group (8 out of 123 players) and 9.2% in the CON group (18 out of 196 players). Although the INT group showed almost 1/3 reduction in hamstring injury incidence compared to the CON group, the difference was not statistically significant (p > 0.05). Moreover, no differences (p > 0.05, odds ratio [OR] = trivial-to-small) in distribution between the groups were found in hamstring injury characteristics (leg dominance and mechanism) except for the distribution of injuries that occurred during matches or training (p = 0.036; OR = 6.14, moderate). Conclusion: The program of high-velocity elastic-band training did not prove to be effective in preventing hamstring muscle injuries in football players despite displaying some positive indications that could be considering when creating injury prevention programs.

2.
J Strength Cond Res ; 35(4): 902-909, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33555833

RESUMO

ABSTRACT: Nuell, S, Illera-Domínguez, V, Carmona, G, Macadam, P, Lloret, M, Padullés, JM, Alomar, X, and Cadefau, JA. Hamstring muscle volume as an indicator of sprint performance. J Strength Cond Res 35(4): 902-909, 2021-This study aimed to compare mechanical properties and performance during sprinting, as well as thigh muscle volumes (MVs), between national-level sprinters and physically active males. In addition, the relationships between thigh MVs and sprint mechanical properties and performance were investigated. Seven male sprinters and 9 actives performed maximal-effort 40-m sprints. Instantaneous velocity was measured by radar to obtain theoretical maximum force (F0), the theoretical maximum velocity (V0), and the maximum power (Pmax). For MV assessment, series of cross-sectional images of each subject's thigh were obtained by magnetic resonance imaging for each of the quadriceps and hamstring muscles and the adductor muscle group. Sprinters were faster over 10 m (7%, effect size [ES] = 2.12, p < 0.01) and 40 m (11%, ES = 3.68, p < 0.01), with significantly higher V0 (20%, ES = 4.53, p < 0.01) and Pmax (28%, ES = 3.04, p < 0.01). Sprinters had larger quadriceps (14%, ES = 1.12, p < 0.05), adductors (23%, ES = 1.33, p < 0.05), and hamstrings (32%, ES = 2.11, p < 0.01) MVs than actives. Hamstrings MV correlated strongly with 40-m sprint time (r = -0.670, p < 0.01) and V0 (r = 0.757, p < 0.01), and moderately with Pmax (r = 0.559, p < 0.05). Sprinters were significantly faster and had greater V0 and Pmax than active males. Larger MVs were found in sprinters' thighs, especially in the hamstring musculature, and strong correlations were found between hamstring MV and sprint mechanical properties and sprint performance.


Assuntos
Desempenho Atlético , Músculos Isquiossurais , Corrida , Estudos Transversais , Músculos Isquiossurais/diagnóstico por imagem , Humanos , Masculino , Coxa da Perna
3.
Eur J Sport Sci ; 20(6): 793-802, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31526116

RESUMO

Abstract This study aimed to analyse changes in sprint performance, muscle volumes (MVs) and sprint mechanical parameters (SMPs) in national-level sprinters performing a 5-month indoor sprint-based training macrocycle (SBTM). Twelve well-trained sprinters were tested on three different occasions throughout the SBTM. Testing procedures included: sprint performance over 10m, 40m, 80m, 150m, and 300m; MRI of thighs, to compute MVs of quadriceps, hamstrings and adductors; and a 40m sprint using a radar gun to assess SMPs such as theoretical maximal horizontal force, theoretical maximal horizontal velocity (V0), maximal power and index of force application (DRF). Improvements in sprint performance of between 4% and 7% (ES = 0.46-1.11, P < 0.01) were accompanied by increments in: quadriceps of 6% (ES = 0.41, P < 0.01), hamstrings of 10% (ES = 0.62, P < 0.01), adductors of 12% (ES = 0.87, P < 0.01), V0 of 5% (ES = 0.40, P < 0.01) and DRF of 7% (ES = 0.91, P < 0.01). In conclusion, during the SBTM after the off-season, moderate hypertrophic changes occur in sprinters. Moreover, the greater increase in hamstrings and adductors, compared with quadriceps, might be related to the prominent role of these muscle groups in sprinting. Furthermore, the SBTM was likely effective at developing sprint performance in sprinters, thereby endorsing the idea that sprint-specific training is crucial for highly trained individuals. Finally, our results support the notion that V0 or the "velocity-oriented" force-velocity profile is determinant of performance in sprinters.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Aumento do Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Feminino , Músculo Grácil/diagnóstico por imagem , Músculo Grácil/fisiologia , Músculos Isquiossurais/anatomia & histologia , Músculos Isquiossurais/diagnóstico por imagem , Músculos Isquiossurais/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Força Muscular/fisiologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Coxa da Perna/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
4.
PLoS One ; 14(11): e0224862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31689336

RESUMO

The purpose of this study was to determine and compare thigh muscle volumes (MVs), and sprint mechanical properties and performance between male and female national-level sprinters. We also studied possible relationships between thigh MVs and sprint performance. Nine male and eight female national-level sprinters participated in the study. T1-weighted magnetic resonance images of the thighs were obtained to determine MVs of quadriceps, hamstrings and adductors. Sprint performance was measured as the time to cover 40 and 80 m. Instantaneous sprint velocity was measured by radar to obtain theoretical maximum force (F0), theoretical maximum velocity (V0) and maximum power (Pmax). When MVs were normalized by height-mass, males showed larger hamstrings (13.5%, ES = 1.26, P < 0.05) compared with females, while quadriceps and adductors showed no statistically significant differences. Males were extremely faster than females in 40 m (14%, ES = 6.68, P < 0.001) and in 80 m (15%, ES = 5.01, P < 0.001. Males also showed increased sprint mechanical properties, with larger F0 (19%, ES = 1.98, P < 0.01), much larger Pmax (46%, ES = 3.76, P < 0.001), and extremely larger V0 (23%, ES = 6.97, P < 0.001). With the pooled data, hamstring and adductor MVs correlated strongly (r = -0.685, P < 0.01) and moderately (r = -0.530, P < 0.05), respectively, with sprint performance; while quadriceps showed no association. The sex-stratified analysis showed weaker associations compared with pooled data, most likely due to small sample size. In conclusion, males were faster than females and showed larger MVs, especially in hamstrings. Moreover, regarding the thigh muscles, hamstrings MV seems the most related with sprint performance as previously proposed.


Assuntos
Músculo Esquelético/anatomia & histologia , Corrida/fisiologia , Caracteres Sexuais , Coxa da Perna/anatomia & histologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Tamanho do Órgão , Adulto Jovem
5.
J Sports Sci Med ; 16(2): 239-246, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28630577

RESUMO

Hamstring muscle injuries occur during high-speed activities, which suggests that muscular strength at high velocities may be more important than maximal strength. This study examined hamstring adaptations to training for maximal strength and for strength at high velocities. Physically active men (n = 25; age, 23.0 ± 3.2 years) were randomly divided into: (1) a resistance training (RT, n = 8) group, which performed high-load, low-velocity concentric-eccentric hamstring contractions; (2) a resistance training concentric (RTC; n = 9) group, which performed high-load, low-velocity concentric-only hamstring contractions; and (3) a high-velocity elastic band training (HVT, n = 8) group, which performed low-load, high-velocity concentric-eccentric hamstring contractions. Pre- and posttraining tests included hamstring strength on a hamstring-curl apparatus, concentric knee extension-flexion at 60°/s, 240°/s, and 450°/s, eccentric knee flexion at 60°/s and 240°/s, hamstring and quadriceps coactivation, knee flexion and extension frequency in the prone position, and 30-m sprint running speed from a stationary start and with a running start. Knee flexor torque increased significantly by 21.1% ± 8.1% in the RTC group and 16.2% ± 4.2% in the RT group (p < 0.05 for both groups). Hamstring coactivation decreased significantly in both groups. In the HVT group, knee flexion and extension frequency increased by 17.8% ± 8.2%, concentric peak torque of the knee flexors at 450°/s increased by 31.0% ± 12.0%, hamstring coactivation decreased, and running performance over 30 m improved (p < 0.05 for all parameters). These findings suggest that resistance training at high velocities is superior to traditional heavy resistance training for increasing knee flexor strength at high velocities, movement frequency, and sprint running performance. These findings also indicate that traditional training approaches are effective for increasing knee flexor strength and reducing knee extensor coactivation, but this outcome is limited to low and moderate speeds.

6.
Pflugers Arch ; 463(4): 603-13, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22241065

RESUMO

Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is the most potent allosteric activator of liver 6-phosphofructo-1-kinase enzyme, which is crucial for glycolysis. It is present in skeletal muscle but its importance is controversial as a regulator of muscle glycolysis. This study aims to determine the role of Fru-2,6-P(2) in the control of muscle glycolysis during contraction. Muscle contraction was produced by chronic low-frequency stimulation of rabbit tibialis anterior for 24 h, followed by a rest period of 48 h. To determine muscle glycolysis adaptation, we applied a short functional electrostimulation test using the same system of low-frequency stimulation for 1, 3, and 10 s. The variation in concentration of lactate and pyruvate was used to calculate the flux along the glycolysis pathway and the Fru-1,6-P(2)/Fru-6-P ratio permitted to analyze the 6-phosphofructo-1-kinase activation. Fru-2,6-P(2) levels increased over the 24 h of stimulation and remained elevated after the rest period, this being the only metabolite that kept the changes produced by chronic low-frequency stimulation during the rest. During the short functional electrostimulation test, the glycolytic pathway in stimulated and rested muscle was more active than in control muscle, which coincided with higher kinase activity of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) enzyme. Furthermore, we found a decrease in muscle, liver, and ubiquitous PFK-2/FBPase-2 isoform expression and an increase in heart isoform expression. For the first time, we demonstrate that a persistent increase in Fru-2,6-P(2) produced by a change in PFK-2/FBPase-2 isoform expression may play an important role in the regulation of muscle glycolysis during the first moments of exercise.


Assuntos
Glicólise/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/enzimologia , Fosfofrutoquinase-2/metabolismo , Animais , Feminino , Coração/fisiologia , Isoenzimas/metabolismo , Fígado/enzimologia , Coelhos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...