Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 77(5): 1262-1271, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36891971

RESUMO

In tetrapods, BMP-signaling coordinates limb outgrowth, skeleton patterning, and apoptosis during the formation of their typical autopod structures, the digits. In addition, inhibition of BMP signaling during mouse limb development leads to the persistence and enlargement of an important signaling center, the apical ectodermal ridge (AER), and consequent digit defects. Interestingly, during fish fin development there is a natural elongation of the AER, rapidly converted into an apical finfold (FF), in which osteoblasts differentiate into dermal fin-rays used in aquatic locomotion. Previous reports have led us to suggest that upregulation of Hox13 genes in the distal fin mesenchyme, caused by the origin of novel enhancer modules, may have caused an increment of the BMP signaling potentially leading to the apoptosis of these osteoblasts precursors of the fin-rays. To explore this hypothesis, we characterized the expression of several components of the BMP signaling in zebrafish lines with distinct FF sizes (bmp2b, smad1, smoc1, smoc2, grem1a, msx1b, msx2b, Psamd1/5/9). Our data suggest that the BMP signaling is enhanced in shorter FFs and inhibited in longer FFs, as implied by the differential expression of several components of this network. In addition, we detected an earlier expression of several of these BMP-signaling components associated with the development of short FFs and the opposite tendency during the development of longer FFs. Thus, our results suggest that a heterochronic shift, involving enhanced Hox13 expression and BMP signaling may have caused the reduction of the FF size during the evolutionary transition from fish fins to tetrapod limbs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Evolução Biológica , Nadadeiras de Animais , Transdução de Sinais , Extremidades/fisiologia
2.
RSC Med Chem ; 13(8): 970-977, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36092141

RESUMO

Molecular hybridization approaches have become an important strategy in medicinal chemistry, and to this end, we have developed a series of novel N-1,2,3-triazole-isatin hybrids that are promising as tumour anti-proliferative agents. Our isatin hybrids presented high cytotoxic activity against colon cancer cell line SW480, lung adenocarcinoma cell line A549, as well as breast cancer cell lines MCF7 and MDA-MB-231. All tested compounds demonstrated better anti-proliferation (to 1-order of magnitude) than the cis-platin (CDDP) benchmark. In order to explore potential biological targets for these compounds, we used information from previous screenings and identified as putative targets the histone acetyltransferase P-300 (EP300) and the acyl-protein thioesterase 2 (LYPLA2), both known to be involved in epigenetic regulation. Advantageous pharmacological properties were predicted for these compounds such as good total surface area of binding to aromatic and hydrophobic units in the enzyme active site. In addition, we found down-regulation of LYPLA2 and EP300 in both the MCF7 and MDA-MB-231 breast cancer cells treated with our inhibitors, but no significant effect was detected in normal breast cells MCF10A. We also observed upregulation of EP300 mRNA expression in the MCF10A cell line for some of these compounds and the same effect for LYPLA2 mRNA in MCF7 for one of our compounds. These results suggest an effect at the transcriptional regulation level and associated with oncological contexts.

3.
Sci Rep ; 11(1): 7165, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785799

RESUMO

The overexpression of hoxd13a during zebrafish fin development causes distal endochondral expansion and simultaneous reduction of the finfold, mimicking the major events thought to have happened during the fin-to-limb transition in Vertebrates. We investigated the effect of hoxd13a overexpression on putative downstream targets and found it to cause downregulation of proximal fin identity markers (meis1 and emx2) and upregulation of genes involved in skeletogenesis/patterning (fbn1, dacha) and AER/Finfold maintenance (bmps). We then show that bmp2b overexpression leads to finfold reduction, recapitulating the phenotype observed in hoxd13a-overexpressing fins. In addition, we show that during the development of the long finfold in leot1/lofdt1 mutants, hoxd13a and bmp2b are downregulated. Our results suggest that modulation of the transcription factor Hoxd13 during evolution may have been involved in finfold reduction through regulation of the Bmp signalling that then activated apoptotic mechanisms impairing finfold elongation.


Assuntos
Nadadeiras de Animais/embriologia , Proteína Morfogenética Óssea 2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Padronização Corporal , Regulação para Baixo , Embrião não Mamífero , Proteínas de Homeodomínio/metabolismo , Modelos Animais , Modelos Biológicos , Mutação , Transdução de Sinais/genética , Esqueleto/embriologia , Fatores de Transcrição/metabolismo , Regulação para Cima , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...