Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(5): 1276-1279, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857267

RESUMO

We report an efficient deep-UV master-oscillator power amplifier (MOPA) laser system at 229 nm that generates 350 ps pulses at 2 MHz repetition rate with an average power of 1.2 W. The use of a polarization-maintaining large mode area neodymium-doped fiber operating on the 4F3/2→4I9/2 transition allows high-power laser emission of up to 28 W near 915 nm in the sub-nanosecond regime with low spectral broadening. Two nonlinear frequency conversion stages (LBO + BBO crystals) in a single-pass configuration directly convert the IR laser emission to deep UV. This laser demonstrates the great potential of Nd3+-doped fiber lasers to produce high-power deep-UV emission.

2.
Opt Lett ; 46(15): 3564-3567, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329225

RESUMO

We present a compact passively mode-locked fiber laser emitting near 910 nm with an all-polarization-maintaining fiber laser architecture. The ring-cavity laser configuration includes a core-pumped neodymium-doped fiber as a gain medium and a semiconductor saturable absorber mirror as a passive mode-locking element. A bandpass filter is used to suppress parasitic emission near 1.06 µm and allows wavelength tuning between 903 and 912 nm. The laser operates in a highly stable and self-starting all-normal-dispersion regime with a minimum pulse duration of 8 ps at 28.2 MHz pulse repetition rate and 0.2 nJ maximum pulse energy. A single-pass amplifier stage increases the pulse energy up to 1.5 nJ, and pulse compression with a pair of gratings is demonstrated with nearly Fourier transform limited pulses.

3.
Opt Express ; 29(3): 4240-4248, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771008

RESUMO

We present the first frequency-quadrupled linearly-polarized Q-switched neodymium-doped fiber laser generating > 500 mW average power at 226 nm. For this purpose, an amplified Q-switched oscillator using novel large-mode-area (LMA) fibers and generating up to 24 W average power (15 kW peak power) at 905 nm was developed. Two nonlinear frequency conversion stages using a LBO crystal for SHG and a BBO crystal for FHG generate respectively up to 4.9 W average power in the deep blue at 452 nm and a maximum of 510 mW average power in the deep ultra-violet (DUV) at 226 nm. Performance limitations and further improvements are discussed.

4.
Opt Express ; 29(5): 6599-6607, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726177

RESUMO

We present a bi-directionally 793-nm diode-pumped Tm3+, Ho3+-codoped silica polarization maintaining double-clad all-fiber laser based on a single-oscillator architecture emitting 195 W at 2.09 µm in continuous wave mode of operation, with a beam quality near the diffraction limit (M2 = 1.08). The power scaling of the laser is only pump-power-limited in the range of the total available pump power (540 W).

5.
Opt Express ; 28(15): 22307-22320, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752496

RESUMO

We report on our realization of a high-power holmium doped fiber laser, together with the validation of our numerical simulation of the laser. We first present the measurements of the physical parameters that are mandatory to model accurately the laser-holmium interactions in our silica fiber. We then describe the realization of the clad-pumped laser, based on a triple-clad large mode area holmium (Ho) doped silica fiber. The output signal power is 90 W at 2120 nm, with an efficiency of about 50% with respect to the coupled pump power. This efficiency corresponds to the state of the art for clad-pumped Ho-doped fiber lasers in the 100 W power class. By comparing the experimental results to our simulation, we demonstrate its validity and use it to show that the efficiency is limited, for our fiber, by the non-saturable absorption caused by pair-induced quenching between adjacent holmium ions.

6.
Opt Lett ; 44(22): 5497-5500, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730092

RESUMO

We demonstrate for the first time, to our knowledge, an all-polarization-maintaining double-clad neodymium fiber laser operating in the dissipative soliton resonance (DSR) regime where stable mode-locking is achieved using a nonlinear amplifying loop mirror (NALM) with large normal dispersion in a figure-8 cavity design. The laser thereby generates square-shaped nanosecond pulses whose duration linearly scales with pump power from 0.5 up to 6 ns, with a maximum energy of 20 nJ. In addition, output pulses feature a remarkably narrow bandwidth of 60 pm along with a signal-to-noise ratio higher than 80 dB. This study then paves the way toward using such DSR-based sources for efficient frequency doubling in the blue spectral range.

7.
Opt Express ; 27(6): 8387-8394, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052657

RESUMO

A bidirectional 793 nm diode-pumped actively Q-switched Tm3+, Ho3+-codoped silica polarization-maintaining (PM) double-clad (DC) fiber laser is reported. With this fiber laser, 55 W of average output power with 100 ns pulse width at 200 kHz repetition rate and 2.09 µm wavelength is obtained. The pump power injection with end-caps fusion-spliced on fiber tips provides good power stability (< 1.1%) and beam quality factors (M2 < 1.7). The fiber laser output beam polarization factor is 97.5%. At 55 W, no thermal-induced damage is observed on any optical element, and power scaling of the laser is only pump-power-limited in the range of the total available pump power (180 W).

8.
Opt Lett ; 43(13): 3049-3052, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957778

RESUMO

The radiation responses of different high-power erbium/ytterbium-codoped fiber amplifiers (HP-EYDFA) have been investigated up to 100 krad (SiO2) dose levels. These devices are able to deliver 20 W of signal output power at 1565 nm by pumping at 915 nm (43 W) radiation tolerant (Er/Yb) or radiation hardened (ErYbCe) active few mode fibers; these performances are needed for free-space communications between low-orbit satellites and ground transceivers. X-ray irradiation results show that, thanks to a positive influence of the photo- and thermal-bleaching phenomena associated with such high-power operating conditions, the gain degradation levels of HP-EYDFA based on radiation hardened fibers remain below 6% after 100 krad at an accelerated dose rate of 3.4 rad/s.

9.
Opt Express ; 26(8): 10000-10006, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715935

RESUMO

We present the first frequency-doubled neodymium-doped fiber laser generating multi-watt CW power near 450 nm. A bow-tie resonator incorporating a LBO nonlinear crystal is integrated within a Nd-doped fiber laser emitting near 900 nm. This scheme achieves an IR to blue conversion efficiency close to 55% without any active control of the internal resonant cavity. As a result, up to 7.5 W of linearly-polarized blue power is generated, with beam quality factors Mx2 ~1.0 and My2 ~1.5. A simple numerical model has been developed to optimize and analyse the IR to blue conversion efficiency in the resonant cavity. Performance limitations and prospects for further improvements are discussed.

10.
Opt Express ; 25(15): 18314-18319, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789318

RESUMO

Selective amplifications of LP01 fundamental mode and higher order modes LP11 and LP01 are demonstrated in a double-pass Nd-doped LMA fiber amplifier operating at 910 nm. A multimode core fiber Bragg grating is employed to select a single guided mode by simply adjusting the wavelength of the seed signal. Although the M2 parameter of the output beam from the amplifier was ~2.5 in a single-pass configuration, a double-pass configuration with LP01 mode selection reduces the value of the M2 parameter to 1.06 in spite of the multimode nature of the core (V~5). In addition, it is shown that this amplifier configuration permits to lower both the power saturation and the parasitic emission at 1060 nm, which consequently increase the pump-to-signal conversion efficiency at 910 nm.

11.
Opt Lett ; 41(21): 5063-5066, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805686

RESUMO

Optical parametric generation is demonstrated in orientation-patterned gallium arsenide, pumped by a novel single-oscillator simultaneously Q-switched and mode-locked thulium-doped fiber laser, downconverting the pump radiation into the mid-infrared wavelength regime. The maximum output energy reached is greater than 2.0 µJ per pump pulse.

12.
Opt Lett ; 41(11): 2545-8, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244410

RESUMO

A single-oscillator actively Q-switched mode-locked (QML) thulium-doped silica fiber laser is presented and used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-infrared (mid-IR) supercontinuum (SC) generation. The fiber laser provided high-peak-power levels directly from the oscillator delivering single mode-locked pulse energies up to 48 µJ, being 2-4 orders of magnitude higher than conventional continuous wave mode-locked lasers. By pumping a ZBLAN fiber specially designed for high-output-power SC generation, 7.8 W have been achieved in all spectral bands with a spectrum extending to 4.2 µm.

13.
Opt Lett ; 40(7): 1464-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831360

RESUMO

A diode-pumped, actively mode-locked high-power thulium (Tm3+)-doped double-clad silica fiber laser is demonstrated, providing an average output power in mode-locked (continuous wave) operation of 53 W (72 W) with a slope efficiency of 34% (38%). Mode-locking in the 6th-harmonic order was obtained by an acousto-optic modulator driven at 66 MHz without dispersion compensation. The shortest measured output pulse width was 200 ps. Owing to a diffraction grating as cavity end mirror, the central wavelength could be tuned from 1.95 to 2.13 µm. The measured beam quality in mode-locked and continuous wave operation has been close to the diffraction limit.


Assuntos
Lasers de Estado Sólido , Dióxido de Silício/química , Túlio
14.
Opt Lett ; 40(6): 1101-4, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768192

RESUMO

An efficient actively Q-switched Tm3+-doped single-oscillator fiber laser based on a silica polarization-maintaining (PM) double-clad fiber provided average powers of 23 W at pulse widths of 65 ns at 40 kHz pulse repetition frequency. It was used to directly pump a ZnGeP2 optical parametric oscillator (OPO). Up to 6.5 W were generated in mid-IR wavelength range.

15.
Opt Lett ; 38(2): 196-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23454960

RESUMO

In this work, the influence of photodarkening (PD) and photobleaching (PB) on the lasing features of the ytterbium-doped aluminosilicate fiber lasers is examined. Simultaneous PD and PB with 633 nm irradiation was monitored at the lasing wavelength of 1070 nm and compared with individually caused PD and PB effects. The variation of laser threshold and slope efficiency was reported. By analyzing the laser performances it was found that the ratio of excess loss at 633 and 1070 nm is expected to be less than 20. In addition, considerable mitigation of the PD with 633 nm light irradiation is demonstrated.

16.
Opt Express ; 20(8): 8457-65, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513553

RESUMO

We investigated the efficiencies of two different approaches to increase the radiation hardness of optical amplifiers through development of improved rare-earth (RE) doped optical fibers. We demonstrated the efficiency of codoping with Cerium the core of Erbium/Ytterbium doped optical fibers to improve their radiation tolerance. We compared the γ-rays induced degradation of two amplifiers with comparable pre-irradiation characteristics (~19 dB gain for an input power of ~10 dBm): first one is made with the standard core composition whereas the second one is Ce codoped. The radiation tolerance of the Ce-codoped fiber based amplifier is strongly enhanced. Its output gain decrease is limited to ~1.5 dB after a dose of ~900 Gy, independently of the pump power used, which authorizes the use of such fiber-based systems for challenging space missions associated with high total doses. We also showed that the responses of the two amplifiers with or without Ce-codoping can be further improved by another technique: the pre-loading of these fibers with hydrogen. In this case, the gain degradation is limited to 0.4 dB for the amplifier designed with the standard composition fiber whereas 0.2 dB are reported for the one made with Ce-codoped fiber after a cumulated dose of ~900 Gy. The mechanisms explaining the positive influences of these two treatments are discussed.

17.
Opt Express ; 19(20): 19340-5, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21996874

RESUMO

We report on an extensive investigation of photodarkening in Yb-doped silica fibers. A set of similar fibers, covering a large Yb concentration range, was made so as to compare the photodarkening induced losses. Careful measurements were made to ensure equal and uniform inversion for all the tested fibers. The results show that, with the specific set-up, the stretching parameter obtained through fitting has a very limited variation. This gives more meaning to the fitting parameters. Results tend to indicate a square law dependence of the concentration of excited ions on the final saturated loss. We also demonstrate self-similarity of loss evolution when experimental curves are simply normalized to fitting parameters. This evidence of self-similarity also supports the possibility of introducing a preliminary figure of merit for Yb-doped fiber. This will allow the impact of photodarkening on laser/amplifier devices to be evaluated.


Assuntos
Amplificadores Eletrônicos , Raios Infravermelhos , Óptica e Fotônica/instrumentação , Itérbio/química , Desenho de Equipamento , Fluorescência
18.
Opt Express ; 19(25): 25077-83, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273899

RESUMO

The present work describes photodarkening from the viewpoint of cooperative luminescence. The temporal evolution of both effects was measured simultaneously by means of ytterbium doped aluminosilicate fibers for concentrations up to 1.8 wt% Yb3+. The quadratic dependence of photodarkening and cooperative luminescence versus dopant concentration was observed. The change in the photodarkening and cooperative luminescence mutual dynamics for highly and low doped fibers is ascribed to a different ion number which forms the cluster. Cooperative luminescence is proved to be a natural probe for photodarkening since it provides new pieces of information and contributes to the photodarkening mechanism description.


Assuntos
Tecnologia de Fibra Óptica/métodos , Medições Luminescentes/métodos , Dióxido de Silício/química , Itérbio/química , Absorção , Luminescência , Estatística como Assunto
19.
Opt Express ; 18(5): 5100-5, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20389522

RESUMO

We demonstrate 308 mW of single-mode laser emission at 464 nm from a frequency doubled picosecond fiber based Master Oscillator Power Amplifier (MOPA). The laser system consisted of a gain-switched and spectrally narrowed Fabry-Perot laser diode emitting at 928 nm, which was amplified in a two-stage amplifier based on W-type double-clad Nd-doped fibers. Output pulses with a duration of 90 ps at a repetition rate of 41 MHz were frequency-doubled in a periodically poled MgO-doped Congruent Lithium Niobate. A conversion efficiency of 14.8% was achieved in single-pass configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...