Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12846, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145301

RESUMO

Conventional planar frequency selective surfaces (FSSs) are characterized in the far-field region and they are sensitive to the incidence angle of impinging waves. In this paper, a spherical dome FSS is presented, aiming to provide improved angular stable bandpass filtering performance as compared to its planar counterpart when the FSS is placed in the near-field region of an antenna source. A comparison between the conformal FSS and a finite planar FSS is presented through simulations at the frequency range between 26 to 40 GHz in order to demonstrate the advantages of utilizing the conformal FSS in the near-field. The conformal FSS is 3D printed and copper electroplated, which leads to a low-cost and lightweight bandpass filter array. Placing it in the near-field region of a primary antenna can be used as radomes to realize compact high-performance mm-wave systems. The comparison between simulated and measured conformal FSS results is in good agreement. The challenges that arise when designing, manufacturing, and measuring this type of structure are reported and guidelines to overcome these are presented.

2.
ACS Photonics ; 8(3): 841-846, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33842672

RESUMO

Interlaced metallic meshes form a class of three-dimensional metamaterials that exhibit nondispersive, broadband modes at low frequencies, without the low frequency cutoff typical of generic wire grid geometries. However, the experimental observation of these modes has remained an open challenge, both due to the difficulties in fabricating such complex structures and also because the broadband mode is longitudinal and does not couple to free-space radiation (dark mode). Here we report the first experimental observation of the low frequency modes in a block of interlaced meshes fabricated through 3D printing. We demonstrate how the addition of monopole antennas to opposing faces of one of the meshes enables coupling of a plane wave to the low frequency "dark mode" and use this to obtain the dispersion of the mode. In addition, we utilize orthogonal antennas on opposite faces to achieve polarization rotation as well as phase shifting of radiation passing through the structure. Our work paves the way toward further experimental study into interlaced meshes and other complex 3D metamaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...