Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 22(1): 31, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973768

RESUMO

BACKGROUND: Isolated ACL reconstructions (ACLR) demonstrate limitations in restoring native knee kinematics. This study investigates the knee mechanics of ACLR plus various anterolateral augmentations using a patient-specific musculoskeletal knee model. MATERIALS AND METHODS: A patient-specific knee model was developed in OpenSim using contact surfaces and ligament details derived from MRI and CT data. The contact geometry and ligament parameters were varied until the predicted knee angles for intact and ACL-sectioned models were validated against cadaveric test data for that same specimen. Musculoskeletal models of the ACLR combined with various anterolateral augmentations were then simulated. Knee angles were compared between these reconstruction models to determine which technique best matched the intact kinematics. Also, ligament strains calculated by the validated knee model were compared to those of the OpenSim model driven by experimental data. The accuracy of the results was assessed by calculating the normalised RMS error (NRMSE); an NRMSE < 30% was considered acceptable. RESULTS: All rotations and translations predicted by the knee model were acceptable when compared to the cadaveric data (NRMSE < 30%), except for the anterior/posterior translation (NRMSE > 60%). Similar errors were observed between ACL strain results (NRMSE > 60%). Other ligament comparisons were acceptable. All ACLR plus anterolateral augmentation models restored kinematics toward the intact state, with ACLR plus anterolateral ligament reconstruction (ACLR + ALLR) achieving the best match and the greatest strain reduction in ACL, PCL, MCL, and DMCL. CONCLUSION: The intact and ACL-sectioned models were validated against cadaveric experimental results for all rotations. It is acknowledged that the validation criteria are very lenient; further refinement is required for improved validation. The results indicate that anterolateral augmentation moves the kinematics closer to the intact knee state; combined ACLR and ALLR provide the best outcome for this specimen.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Instabilidade Articular , Humanos , Fenômenos Biomecânicos , Lesões do Ligamento Cruzado Anterior/cirurgia , Amplitude de Movimento Articular , Reconstrução do Ligamento Cruzado Anterior/métodos , Instabilidade Articular/cirurgia , Cadáver , Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia
2.
Int J Spine Surg ; 16(5): 802-814, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36007955

RESUMO

BACKGROUND: The practice of cement augmentation in pedicle screw fixation is well established. However, there is a lack of consensus regarding the optimal screw design or cement type. This remains a clinically important question given the incidence of cement augmentation-associated complications. While fenestrated screws have become widely used in clinical practice, the relationship between fenestration placement along the screw axis and cement plume geometry and pullout strength have yet to be clarified. This study was designed to evaluate the mechanical and geometric properties of different fenestrated screw designs and cement viscosities in pedicle screw fixation. METHODS: Three different screw fenestration configurations and 2 different cement viscosities were examined in this study. Axial pullout tests were conducted in both foam blocks and cadaveric vertebrae. All vertebral specimens underwent tests of bone mineral density. In the foam blocks, 6 tests were conducted for each augmentation combination and also for nonaugmented controls. In the cadaveric testing, 36 lumbar vertebrae were instrumented with a cemented and uncemented control screw to compare features of fixation. Computed tomography (CT) images were taken to assess the geometric profile of the cement plumes in both the foam blocks and the cadaveric vertebrae. RESULTS: In both foam blocks and vertebral specimens, cementation was shown to confer a significant increase in pullout strength. Significant correlations existed between the anterior-posterior and lateral cement plume diameters and pullout strength in cadaveric vertebra and foam blocks, respectively. Within instrumented vertebra, variables such as the width of the vertebral body and screw insertion were found to significantly correlate with enhanced fixation. CT analysis of the instrumented vertebra demonstrated that a centrally distributed pattern of fenestrations was found to result in a cement plume with consistently predictable distribution within the vertebral body, without evidence of leak. CONCLUSION: Cementation of fenestrated pedicle screws increases overall pullout forces; however, there is an unclear relationship between the geometric properties of the cement plume and the overall strength of the screw-bone interface. This study demonstrates that the plume diameter, vertebral body width, and angle of screw insertion are correlated with enhanced pullout strength. Furthermore, varying the fenestration design of injectable screws resulted in a set of predictable plume patterns, which may be associated with fewer complications. Further investigation is required to clarify the optimal geometric and biomechanical properties of injectable pedicle screws and their role in establishing the cement-bone interface. CLINICAL RELEVANCE: This study is relevant to currently practicing spinal surgeons and biomechanical engineers.

3.
PLoS One ; 17(1): e0262684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085320

RESUMO

BACKGROUND: The ligaments in the knee are prone to injury especially during dynamic activities. The resulting instability can have a profound impact on a patient's daily activities and functional capacity. Musculoskeletal knee modelling provides a non-invasive tool for investigating ligament force-strain behaviour in various dynamic scenarios, as well as potentially complementing existing pre-planning tools to optimise surgical reconstructions. However, despite the development and validation of many musculoskeletal knee models, the effect of modelling parameters on ligament mechanics has not yet been systematically reviewed. OBJECTIVES: This systematic review aimed to investigate the results of the most recent studies using musculoskeletal modelling techniques to create models of the native knee joint, focusing on ligament mechanics and modelling parameters in various simulated movements. DATA SOURCES: PubMed, ScienceDirect, Google Scholar, and IEEE Xplore. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Databases were searched for articles containing any numerical ligament strain or force data on the intact, ACL-deficient, PCL-deficient, or lateral extra-articular reconstructed (LER) knee joints. The studies had to derive these results from musculoskeletal modelling methods. The dates of the publications were between 1 January 1995 and 30 November 2021. METHOD: A customised data extraction form was created to extract each selected study's critical musculoskeletal model development parameters. Specific parameters of the musculoskeletal knee model development used in each eligible study were independently extracted, including the (1) musculoskeletal model definition (i.e., software used for modelling, knee type, source of geometry, the inclusion of cartilage and menisci, and articulating joints and joint boundary conditions (i.e., number of degrees of freedom (DoF), subjects, type of activity, collected data and type of simulation)), (2) specifically ligaments modelling techniques (i.e., ligament bundles, attachment points, pathway, wrapping surfaces and ligament material properties such as stiffness and reference length), (3) sensitivity analysis, (4) validation approaches, (5) predicted ligament mechanics (i.e., force, length or strain) and (6) clinical applications if available. The eligible papers were then discussed quantitatively and qualitatively with respect to the above parameters. RESULTS AND DISCUSSION: From the 1004 articles retrieved by the initial electronic search, only 25 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that considerable variability in the predicted ligament mechanics is caused by differences in geometry, boundary conditions and ligament modelling parameters. CONCLUSION: This systematic review revealed that there is currently a lack of consensus on knee ligament mechanics. Despite this lack of consensus, some papers highlight the potential of developing translational tools using musculoskeletal modelling. Greater consistency in model design, incorporation of sensitivity assessment of the model outcomes and more rigorous validation methods should lead to better agreement in predictions for ligament mechanics between studies. The resulting confidence in the musculoskeletal model outputs may lead to the development of clinical tools that could be used for patient-specific treatments.


Assuntos
Ligamento Cruzado Anterior/fisiologia , Articulação do Joelho/fisiologia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Humanos , Fenômenos Mecânicos
4.
Orthop J Sports Med ; 9(4): 23259671211000464, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997064

RESUMO

BACKGROUND: Meniscus root repairs are important for restoring knee function after a complete meniscus root tear. Various suturing patterns have been proposed for the root repair. The 2-simple-stitches (TSS) method is currently the preferred technique, as it is simplest to perform and allows the least displacement of the meniscus root. PURPOSE: To compare the biomechanical properties of a posterior medial meniscus transtibial root repair consisting of an all-inside meniscal repair device (AMRD) construct with the TSS pullout suture pattern. STUDY DESIGN: Controlled laboratory study. METHODS: Ten pairs of cadaveric medial menisci were prepared with 1 of the 2 constructs. The constructs were randomized between pairs. All constructs were subjected to preloading with 2 N for 10 seconds and then cyclic loading from 5 N to 20 N for 1000 cycles at a frequency of 0.5 Hz. Subsequently, the menisci were loaded to failure at a rate of 0.5 mm/s. All loads were applied in-line with the circumferential meniscal fibers near the posterior medial meniscal horn. RESULTS: The mean yield load and stiffness were similar for both constructs. The elongation after cyclic loading was greater for the AMRD. The displacement at both yield load and ultimate failure were also higher for the AMRD. The ultimate failure load of the AMRD was also significantly higher. During load to failure, the mode of failure in the AMRD was heterogeneous. All the TSS constructs failed by suture cutout. CONCLUSION: Posterior medial meniscus root repairs using both the AMRD and TSS constructs have elongation under the biomechanically acceptable threshold of 3 mm. The stiffness and yield loads indicate similar mechanical properties of the constructs. However, the significantly higher elongation for the AMRD leaves the TSS method as the preferred option for transtibial repairs. Despite this, the AMRD construct may still represent a viable alternative to the TSS suture pattern, comparable to alternative suture patterns with similar limitations. CLINICAL RELEVANCE: The AMRD construct may represent a viable alternative to the TSS suture pattern.

5.
J ISAKOS ; 6(2): 66-73, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33832979

RESUMO

OBJECTIVES: Given the common occurrence of residual laxity and re-injury post anterior cruciate ligament reconstruction (ACLR), additional anterolateral procedures are increasingly used in combination with an ACLR. Despite the perception that there is a risk of over-constraining the lateral tibiofemoral (LTF) compartment, potentially leading to osteoarthritis, assessment on their effect on intra-articular compartment pressures is still lacking. Our objective was therefore, through a pilot biomechanical study, to compare LTF contact pressures after the most commonly used anterolateral procedures. METHODS: A controlled laboratory pilot study was performed using 4 fresh-frozen cadaveric whole lower limbs. Through 0° to 90° of flexion, LTF contact pressures were measured with a Tekscan sensor, located under the lateral meniscus. Knee kinematics were obtained in 3 conditions of rotation (NR: neutral, ER: external and IR: internal rotation) to record the position of the knees for each loading condition. A Motion Analysis system with a coordinate system based on CT scans 3D bone modelling was used. After an ACLR, defined as the reference baseline, 5 anterolateral procedures were compared: anterolateral ligament reconstruction (ALLR), modified Ellison, deep Lemaire, superficial Lemaire and modified MacIntosh procedures. The last 3 procedures were randomised. For each procedure, the graft was fixed in NR at 30° of flexion and with a tension of 20 N. RESULTS: Compared with isolated ACLR, addition of either ALLR or modified Ellison procedure did not increased the overall LTF contact pressure (all p>0.05) through the full range of flexion for the IR condition. Conversely, deep Lemaire, superficial Lemaire and modified MacIntosh procedure (all p<0.05) did increase the overall LTF contact pressure compared with ACLR in IR. No significant difference was observed in ER and NR conditions. CONCLUSION: This pilot study, comparing the main anterolateral procedures, revealed that addition of either ALLR or modified Ellison procedure did not change the overall contact pressure in the LTF compartment through 0° to 90° of knee flexion. In contrast, the deep and superficial Lemaire, and modified MacIntosh procedures significantly increased overall LTF contact pressures when the knee was internally rotated.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamentos Articulares/cirurgia , Tenodese/métodos , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos , Cadáver , Humanos , Instabilidade Articular/cirurgia , Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Ligamentos Articulares/fisiopatologia , Projetos Piloto , Pressão , Amplitude de Movimento Articular , Rotação
6.
J ISAKOS ; 6(2): 74-81, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33832980

RESUMO

OBJECTIVE: The optimal anterolateral procedure to control anterolateral rotational laxity of the knee is still unknown. The objective was to compare the ability of five anterolateral procedures performed in combination with anterior cruciate ligament reconstruction (ACLR) to restore native knee kinematics in the setting of a deficient anterior cruciate ligament (ACL) and anterolateral structures. METHODS: A controlled laboratory study was performed using 10 fresh-frozen cadaveric whole lower limbs with intact iliotibial band. Kinematics from 0° to 90° of flexion were recorded using a motion analysis three-dimensional (3D) optoelectronic system, allowing assessment of internal rotation (IR) and anteroposterior (AP) tibial translation at 30° and 90° of flexion. Joint centres and bony landmarks were calculated from 3D bone models obtained from CT scans. Intact knee kinematics were assessed initially, followed by sequential section of the ACL and anterolateral structures (anterolateral ligament, anterolateral capsule and Kaplan fibres). After ACLR, five anterolateral procedures were performed consecutively on the same knee: ALLR, modified Ellison, deep Lemaire, superficial Lemaire and modified MacIntosh. The last three procedures were randomised. For each procedure, the graft was fixed in neutral rotation at 30° of flexion and with a tension of 20 N. RESULTS: Isolated ACLR did not restore normal overall knee kinematics in a combined ACL plus anterolateral-deficient knee, leaving a residual tibial rotational laxity (p=0.034). Only the ALLR (p=0.661) and modified Ellison procedure (p=0.641) restored overall IR kinematics to the normal intact state. Superficial and deep Lemaire and modified MacIntosh tenodeses overconstrained IR, leading to shifted and different kinematics compared with the intact condition (p=0.004, p=0.001 and p=0.045, respectively). Compared with ACLR state, addition of an anterolateral procedure did not induce any additional control on AP translation at 30° and 90° of flexion (all p>0.05), except for the superficial Lemaire procedure at 90° (p=0.032). CONCLUSION: In biomechanical in vitro setting, a comparison of five anterolateral procedures revealed that addition of either ALLR or modified Ellison procedure restored overall native knee kinematics in a combined ACL plus anterolateral-deficient knee. Superficial and deep Lemaire and modified MacIntosh tenodeses achieved excellent rotational control but overconstrained IR, leading to a change from intact knee kinematics. LEVEL OF EVIDENCE: The level-of-evidence statement does not apply for this laboratory experiments study.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Instabilidade Articular/cirurgia , Articulação do Joelho/cirurgia , Tenodese/métodos , Fenômenos Biomecânicos , Cadáver , Fascia Lata/cirurgia , Humanos , Articulação do Joelho/fisiopatologia , Ligamentos Articulares/fisiopatologia , Ligamentos Articulares/cirurgia , Amplitude de Movimento Articular , Procedimentos de Cirurgia Plástica/métodos , Rotação , Tíbia/fisiopatologia , Tíbia/cirurgia
7.
Orthop J Sports Med ; 9(1): 2325967120969640, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490294

RESUMO

BACKGROUND: Suture pullout during rehabilitation may result in loss of tension in the inferior glenohumeral ligament (IGHL) and contribute to recurrent instability after capsular plication, performed with or without labral repair. To date, the suture pullout strength in the IGHL is not well-documented. This may contribute to recurrent instability. PURPOSE/HYPOTHESIS: A cadaveric biomechanical study was designed to investigate the suture pullout strength of sutures in the IGHL. We hypothesized that there would be no significant variability of suture pullout strength between specimens and zones. Additionally, we sought to determine the impact of early mobilization on sutures in the IGHL at time zero. We hypothesized that capsular plication sutures would fail under low load. STUDY DESIGN: Descriptive laboratory study. METHODS: Seven fresh-frozen cadaveric shoulders were dissected to isolate the IGHL complex, which was then divided into 18 zones. Sutures in these zones were attached to a linear actuator, and the resistance to suture pullout was recorded. A suture pullout strength map of the IGHL was constructed. These loads were used to calculate the load applied at the hand that would initiate suture pullout in the IGHL. RESULTS: Mean suture pullout strength for all specimens was 61.6 ± 26.1 N. The maximum load found to cause suture pullout through tissue was found to be low, regardless of zone of the IGHL. Calculations suggest that an external rotation force applied to the hand of only 9.6 N may be sufficient to tear capsular sutures at time zero. CONCLUSION: This study did not provide clear evidence of desirable locations for fixation in the IGHL. However, given the low magnitude of failure loads, the results suggest the timetable for initiation of range-of-motion exercises should be reconsidered to prevent suture pullout through the IGHL. CLINICAL RELEVANCE: From this biomechanical study, the magnitude of force required to cause suture pullout through the IGHL is met or surpassed by normal postoperative early range-of-motion protocols.

8.
J Spine Surg ; 6(1): 3-12, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32309640

RESUMO

BACKGROUND: To assess whether lumbar pedicle screw placement with a minimally invasive surgical (MIS) vs. open technique imparts different biomechanical parameters and thus may affect failure rates. METHODS: Human cadaveric disarticulated lumbar vertebrae 1-5 were stabilised in cement. Pedicle screws were inserted either via the 'MIS' or 'open' technique, based on previously described anatomical landmarks. Each vertebra had one 'MIS' and one 'open' technique screw. Specimens were tested with an Instron mechanical testing machine, positioned to allow for testing of direct coaxial force. Load was applied until failure occurred, and load-displacement curves generated for each screw. RESULTS: Average failure load was found to be 685±399 N for MIS, versus 661±323 N for open technique (P=0.75). The average ultimate failure load was 748±421 N for MIS, versus 772±326 N for open (P=0.74). Average displacement until failure was 0.95±0.49 mm for MIS as compared to 0.95±0.62 mm for open (P=0.996). Axial stiffness was 936±217 N/mm for MIS and 1,016±263 N/mm for open (P=0.19). Average work required to result in failure was 0.84±1.09 J for MIS and 0.82±1.05 J for open (P=0.94). CONCLUSIONS: There was no significant difference in the biomechanical properties of the MIS as compared with open lumbar pedicle screws, when tested until failure under direct coaxial force. The clinical implication may be that there is no significant advantage in the biomechanical properties of MIS versus open lumbar pedicle screw insertion techniques.

9.
Knee ; 27(3): 871-877, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32220536

RESUMO

BACKGROUND: Patellar tendinopathy is an overuse condition affecting athletes, often with a high morbidity if left untreated. High-level evidence fails to support the use of surgery. A tibial tubercle osteotomy (TTO) has been suggested as a surgical option to improve patient outcomes. Our aim was to explore whether a distalising TTO will alter the patellar tendon to quadriceps tendon force ratio and the sagittal patellar tilt. METHODS: Six cadaver limbs were placed in a custom jig with a mechanical testing machine applying cyclical loads of 200-500 N to the quadriceps tendon. The knee was fixed at 0, 15, 30, 45, 60, 75 and 90° of flexion and a buckle transducer recorded the resultant patellar tendon force. Testing was performed with the native tibial tubercle position and with the tubercle distalised by 11 mm. Testing was also performed with the tubercle anteriorised by 10 mm at both of these tubercle positions, a total of four different testing positions. RESULTS: There was a significant decrease in the patellar tendon to quadriceps tendon force ratio from 30-60° of knee flexion. There was a significant increase in the sagittal patellar tilt at 30° of knee flexion with distalisation. CONCLUSION: This biomechanical study shows that the patellar tendon to quadriceps tendon force ratio can be altered with a distalising tibial tubercle osteotomy. A tibial tubercle osteotomy may be a biomechanical treatment option for recalcitrant patellar tendinopathy by decreasing the load through the patellar tendon, allowing the athlete to maintain higher training volumes and loads.


Assuntos
Osteotomia , Ligamento Patelar/cirurgia , Tendinopatia/cirurgia , Tíbia/cirurgia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ligamento Patelar/fisiopatologia , Tendinopatia/fisiopatologia , Suporte de Carga/fisiologia
10.
J Orthop Traumatol ; 19(1): 11, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30128979

RESUMO

BACKGROUND: In anterior cruciate ligament reconstruction, quadrupled semitendinosus (Quad ST) grafts have potential advantages over doubled semitendinosus-gracilis (ST/G) including larger diameter and gracilis preservation, however the ideal tibial fixation method of the resultant shorter Quad ST graft remains elusive if a fixed-loop suspensory fixation device is used on the femur. We investigated whether the tibial fixation biomechanical properties of a Quad ST fixed indirectly with polyethylene terephthalate tape tied over a screw in a full outside-in created tunnel was superior to a ST/G graft fixed with an interference screw. MATERIALS AND METHODS: In a controlled laboratory study, six cadaveric matched pairs of each construct were subjected to cyclic loading to mimic physiologic loading during rehabilitation. This included preconditioning cycling, cyclic loading to 220 N for 500 cycles, then cyclic loading to 500 N for 500 cycles. RESULTS: High standard deviations across the measured parameters occurred with no significant difference between measured parameters of elongation for the different constructs. Elongation of the Quad-ST construct was greater at 10 and 100 cycles, but not statistically different. Four of the six Quad-ST constructs failed below 100 cycles, compared with two failures below 100 cycles in the ST/G construct. There was a strong correlation between cycles to failure and bone mineral density for the Quad ST-tape constructs. CONCLUSIONS: Tibial fixation of Quad ST with a tied tape-screw construct in a full-length tunnel was not biomechanically superior to ST/G graft fixed with an interference screw, exhibited greater nonsignificant construct elongation with earlier failure, and was more reliant on bone mineral density. LEVEL OF EVIDENCE: In vitro laboratory study.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirurgia , Parafusos Ósseos , Músculo Grácil/transplante , Tendões/transplante , Tíbia/cirurgia , Fenômenos Biomecânicos , Cadáver , Humanos , Pessoa de Meia-Idade
11.
J Spine Surg ; 2(3): 178-184, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27757430

RESUMO

BACKGROUND: Commercial fusion cages typically provide support in the central region of the endplate, failing to utilize the increased compressive strength around the periphery. This study demonstrates the increase in compressive strength that can be achieved if the bony periphery of the endplate is loaded. METHODS: Sixteen cadaveric lumbar vertebrae (L1-L5) were randomly divided into two even groups. A different commercial mass produced implant (MPI) was allocated to each group: (I) a Polyether-ether-ketone (PEEK) anterior lumber inter-body fusion (ALIF) MPI; and (II) a titanium ALIF MPI. Uniaxial compression at a displacement rate of 0.5 mm/sec was applied to all vertebrae during two phases: (I) with the allocated MPI situated in the central region of the endplate; (II) with an aluminum plate, designed to load the bony periphery of the endplate. The failure load and mode of failure was recorded. RESULTS: From phase 1 to phase 2, the failure load increased from 1.1±0.4 to 2.9±1.4 kN for group 1; and from 1.3±1.0 to 3.0±1.9 kN for group 2. The increase in strength from phase 1 to phase 2 was statistically significant for each group (group 1: P<0.01, group 2: P<0.05, paired t-test). There was no significant difference between the groups in either phase (P>0.05, t-test). The mode of failure in phase 1 was the implant being forced through the endplate for both groups. In phase 2, the mode of failure was either a fracture of the epiphyseal rim or buckling of the side wall of the vertebral body. CONCLUSIONS: Loading the periphery of the vertebral endplate achieved significant increase in compressive load capacity compared to loading the central region of the endplate. Clinically, this implies that patient-specific implants which load the periphery of the vertebral endplate could decrease the incidence of subsidence and improve surgical outcomes.

12.
Mater Sci Eng C Mater Biol Appl ; 33(6): 3146-52, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23706194

RESUMO

Cuttlebone is a natural marine cellular material possessing the exceptional mechanical properties of high compressive strength, high porosity and high permeability. This combination of properties is exceedingly desirable in biomedical applications, such as bone tissue scaffolds. In light of recent studies, which converted raw cuttlebone into hydroxyapatite tissue scaffolds, the impact of morphological variations in the microstructure of this natural cellular material on the effective mechanical properties is explored in this paper. Two extensions of the finite element-based homogenization method are employed to account for deviations from the assumption of periodicity. Firstly, a representative volume element (RVE) of cuttlebone is systematically varied to reflect the large range of microstructural configurations possibly among different cuttlefish species. The homogenization results reveal the critical importance of pillar formation and aspect ratio (height/width of RVE) on the effective bulk and shear moduli of cuttlebone. Secondly, multi-cell analysis domains (or multiple RVE domains) permit the introduction of random variations across neighboring cells. Such random variations decrease the bulk modulus whilst displaying minimal impact on the shear modulus. Increasing the average size of random variations increases the effect on bulk modulus. Also, the results converge rapidly as the size of the analysis domain is increased, meaning that a relatively small multi-cell domain can provide a reasonable approximation of the effective properties for a given set of random variation parameters. These results have important implications for the proposed use of raw cuttlebone as an engineering material. They also highlight some potential for biomimetic design capabilities for materials inspired by the cuttlebone microstructure, which may be applicable in biomedical applications such as bone tissue scaffolds.


Assuntos
Materiais Biomiméticos/química , Osso e Ossos/química , Animais , Osso e Ossos/patologia , Decapodiformes/metabolismo , Durapatita/química , Análise de Elementos Finitos , Modelos Moleculares , Porosidade
13.
J Biomech Eng ; 133(8): 081008, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21950901

RESUMO

Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.


Assuntos
Hidrodinâmica , Desenho de Prótese/métodos , Estresse Mecânico , Alicerces Teciduais , Fenômenos Biomecânicos
14.
Biotechnol Bioeng ; 107(4): 737-46, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20589850

RESUMO

The microfluidic environment provided by implanted prostheses has a decisive influence on the viability, proliferation and differentiation of cells. In bone tissue engineering, for instance, experiments have confirmed that a certain level of wall shear stress (WSS) is more advantageous to osteoblastic differentiation. This paper proposes a level-set-based topology optimization method to regulate fluidic WSS distribution for design of cellular biomaterials. The topological boundary of fluid phase is represented by a level-set model embedded in a higher-dimensional scalar function. WSS is determined by the computational fluid dynamics analysis in the scale of cellular base cells. To achieve a uniform WSS distribution at the solid-fluid interface, the difference between local and target WSS is taken as the design criterion, which determines the speed of the boundary evolution in the level-set model. The examples demonstrate the effectiveness of the presented method and exhibit a considerable potential in the design optimization and fabrication of new prosthetic cellular materials for bioengineering applications.


Assuntos
Materiais Biocompatíveis , Microfluídica , Osteócitos/fisiologia , Estresse Mecânico , Engenharia Tecidual/métodos , Proliferação de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...