Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0287529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127918

RESUMO

The use of small ruminants, mainly sheep and goats, is increasing in biomedical research. Small ruminants are a desirable animal model due to their human-like anatomy and physiology. However, the large variability between studies and lack of baseline data on these animals creates a barrier to further research. This knowledge gap includes a lack of computed tomography (CT) scans for healthy subjects. Full body, contrast enhanced CT scans of caprine and ovine subjects were acquired for subsequent modeling studies. Scans were acquired from an ovine specimen (male, Khatadin, 30-35 kg) and caprine specimen (female, Nubian 30-35 kg). Scans were acquired with and without contrast. Contrast enhanced scans utilized 1.7 mL/kg of contrast administered at 2 mL/s and scans were acquired 20 seconds, 80 seconds, and 5 minutes post-contrast. Scans were taken at 100 kV and 400 mA. Each scan was reconstructed using a bone window and a soft tissue window. Sixteen full body image data sets are presented (2 specimens by 4 contrast levels by 2 reconstruction windows) and are available for download through the form located at: https://redcap.link/COScanData. Scans showed that the post-contrast timing and scan reconstruction method affected structural visualization. The data are intended for further biomedical research on ruminants related to computational model development, device prototyping, comparative diagnostics, intervention planning, and other forms of translational research.


Assuntos
Cabras , Ruminantes , Ovinos , Animais , Masculino , Humanos , Feminino , Tomografia Computadorizada por Raios X/métodos
2.
Ann Biomed Eng ; 51(7): 1513-1522, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36841890

RESUMO

The use of ovine animal models in the study of injury biomechanics and modeling is increasing, due to their favorable size and other physiological characteristics. Along with this increase, there has also been increased interest in the development of in silico ovine models for computational studies to compliment physical experiments. However, there remains a gap in the literature characterizing the morphological and mechanical characteristics of ovine ribs. The objective of this study therefore is to report anatomical and mechanical properties of the ovine ribs using microtomography (micro-CT) and two types of mechanical testing (quasi-static bending and dynamic tension). Using microtomography, young ovine rib samples obtained from a local abattoir were cut into approximately fourteen 38 mm sections and scanned. From these scans, the cortical bone thickness and cross-sectional area were measured, and the moment of inertia was calculated to enhance the mechanical testing data. Based on a standard least squares statistical model, the cortical bone thickness varied depending on the region of the cross-section and the position along the length of the rib (p < 0.05), whereas the cross-sectional area remained consistent (p > 0.05). Quasi-static three-point bend testing was completed on ovine rib samples, and the resulting force-displacement data was analyzed to obtain the stiffness (44.67 ± 17.65 N/mm), maximum load (170.54 ± 48.28 N) and displacement at maximum load (7.19 ± 2.75 mm), yield load (167.81 ± 48.12 N) and displacement at yield (6.10 ± 2.25 mm), and the failure load (110.90 ± 39.30 N) and displacement at failure (18.43 ± 2.10 mm). The resulting properties were not significantly affected by the rib (p > 0.05), but by the animal they originated from (p < 0.05). For the dynamic testing, samples were cut into coupons and tested in tension with an average strain rate of 18.9 strain/sec. The resulting dynamic testing properties of elastic modulus (5.16 ± 2.03 GPa), failure stress (63.29 ± 14.02 MPa), and failure strain (0.0201 ± 0.0052) did not vary based on loading rate (p > 0.05).


Assuntos
Fenômenos Mecânicos , Costelas , Ovinos , Animais , Microtomografia por Raio-X , Costelas/diagnóstico por imagem , Costelas/lesões , Osso Cortical/anatomia & histologia , Fenômenos Biomecânicos , Estresse Mecânico
3.
Stapp Car Crash J ; 66: 99-142, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37733823

RESUMO

While the use of Human Body Models (HBMs) in the underbody blast (UBB) environment has increased and shown positive results, the potential of these models has not been fully explored. Obtaining accurate kinematic and kinetic response are necessary to better understand the injury mechanisms for military safety applications. The objective of this study was to validate the Global Human Body Models Consortium (GHBMC) M50 lower extremity using a combined objective rating scheme in vertical and horizontal high-rate axial loading. The model's lower extremity biomechanical response was compared to Post Mortem Human Subjects (PMHS) subjects for vertically and horizontally-applied high rate axial loading. Two distinct experimental setups were used for model validation, comprising a total of 33 distinct end points for validation. A combined Correlation and Analysis (CORA) score that incorporates CORA, time-to-peak (TTP) and peak magnitude of the experimental signals and ISO TS 18571 was used to evaluate the model response. For the horizontal impacts, the combined CORA scores were 0.80, 0.84, and 0.81 for compression, force, and strain respectively. For the vertical impacts combined CORA scores for the knee Z force, compression and heel Z displacement ranged from 0.70-0.81, 0.87-0.91, and 0.82-0.99 respectively. The GHBMC lower extremity model showed good agreement with PMHS experimental data in the horizontal and vertical loading environment in 33 unique tests. The accuracy is demonstrated by using the ISO TS 18571 standard and a combined CORA score that takes into consideration the peak and time to peak of the signal. The results of this study show that GHBMC v 6.0 HBM lower extremity can be used for kinetic and kinematic predictions in the UBB environment.


Assuntos
Corpo Humano , Extremidade Inferior , Humanos , Cadáver , Suporte de Carga , Calcanhar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...