Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 10073, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710817

RESUMO

MicroRNAs (miRNAs) are single-stranded non-coding RNA molecules that play a regulatory role in gene expression and cancer cell signaling. We previously identified miR-628-5p (miR-628) as a potential biomarker in serum samples from men with prostate cancer (PCa) (Srivastava et al. in Tumour Biol 35:4867-4873, 10.1007/s13277-014-1638-1, 2014). This study examined the detailed cellular phenotypes and pathways regulated by miR-628 in PCa cells. Since obesity is a significant risk factor for PCa, and there is a correlation between levels of the obesity-associated hormone leptin and PCa development, here we investigated the functional relationship between leptin and miR-628 regulation in PCa. We demonstrated that exposure to leptin downregulated the expression of miR-628 and increased cell proliferation/migration in PCa cells. We next studied the effects on cancer-related phenotypes in PCa cells after altering miR-628 expression levels. Enforced expression of miR-628 in PCa cells inhibited cell proliferation, reduced PCa cell survival/migration/invasion/spheroid formation, and decreased markers of cell stemness. Mechanistically, miR-628 binds with the JAG1-3'UTR and inhibits the expression of Jagged-1 (JAG1). JAG1 inhibition by miR-628 downregulated Notch signaling, decreased the expression of Snail/Slug, and modulated epithelial-mesenchymal transition and invasiveness in PC3 cells. Furthermore, expression of miR-628 in PCa cells increased sensitivity towards the drugs enzalutamide and docetaxel by induction of cell apoptosis. Collectively our data suggest that miR-628 is a key regulator of PCa carcinogenesis and is modulated by leptin, offering a novel therapeutic opportunity to inhibit the growth of advanced PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Leptina/genética , Leptina/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Neoplasias da Próstata/patologia
3.
Cancers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884984

RESUMO

Abnormal expression of microRNA miR-214-3p (miR-214) is associated with multiple cancers. In this study, we assessed the effects of CRISPR/Cas9 mediated miR-214 depletion in prostate cancer (PCa) cells and the underlying mechanisms. Knockdown of miR-214 promoted PCa cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and increased resistance to anoikis, a key feature of PCa cells that undergo metastasis. The reintroduction of miR-214 in miR-214 knockdown cells reversed these effects and significantly suppressed cell proliferation, migration, and invasion. These in vitro studies are consistent with the role of miR-214 as a tumor suppressor. Moreover, miR-214 knockout increased tumor growth in PCa xenografts in nude mice supporting its anti-oncogenic role in PCa. Knockdown of miR-214 increased the expression of its target protein, Protein Tyrosine Kinase 6 (PTK6), a kinase shown to promote oncogenic signaling and tumorigenesis in PCa. In addition, miR-214 modulated EMT as exhibited by differential regulation of E-Cadherin, N-Cadherin, and Vimentin both in vitro and in vivo. RNA-seq analysis of miR-214 knockdown cells revealed altered gene expression related to PCa tumor growth pathways, including EMT and metastasis. Collectively, our findings reveal that miR-214 is a key regulator of PCa oncogenesis and is a potential novel therapeutic target for the treatment of the disease.

4.
Biomolecules ; 11(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34827600

RESUMO

Long noncoding RNAs (lncRNAs) are transcripts greater than 200 nucleotides that do not code for proteins but regulate gene expression. Recent studies indicate that lncRNAs are involved in the modulation of biological functions in human disease. KCNQ1 Opposite Strand/Antisense Transcript 1 (KCNQ1OT1) encodes a lncRNA from the opposite strand of KCNQ1 in the CDKN1C/KCNQ1OT1 cluster that is reported to play a vital role in the development and progression of cancer. KCNQ1OT1 regulates cancer cell proliferation, cell cycle, migration and invasion, metastasis, glucose metabolism, and immune evasion. The aberrant expression of KCNQ1OT1 in cancer patients is associated with poor prognosis and decreased survival. This review summarizes recent literature related to the biological functions and molecular mechanisms of KCNQ1OT1 in various human cancers, including colorectal, bladder, breast, oral, melanoma, osteosarcoma, lung, glioma, ovarian, liver, acute myeloid leukemia, prostate, and gastric. We also discuss the role of KCNQ1OT1 as a promising diagnostic biomarker and a novel therapeutic target in human cancers.


Assuntos
RNA Longo não Codificante , Carcinogênese , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Oncogenes
5.
Sci Rep ; 11(1): 5660, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707587

RESUMO

Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which regulates tumor growth and survival. Our goal is to delineate the detailed oncogenic role of TNFAIP8 in skin cancer development and progression. Here we demonstrated that higher expression of TNFAIP8 is associated with basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma development in patient tissues. Induction of TNFAIP8 expression by TNFα or by ectopic expression of TNFAIP8 in SCC or melanoma cell lines resulted in increased cell growth/proliferation. Conversely, silencing of TNFAIP8 decreased cell survival/cell migration in skin cancer cells. We also showed that miR-205-5p targets the 3'UTR of TNFAIP8 and inhibits TNFAIP8 expression. Moreover, miR-205-5p downregulates TNFAIP8 mediated cellular autophagy, increased sensitivity towards the B-RAFV600E mutant kinase inhibitor vemurafenib, and induced cell apoptosis in melanoma cells. Collectively our data indicate that miR-205-5p acts as a tumor suppressor in skin cancer by targeting TNFAIP8.


Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , MicroRNAs/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Regiões 3' não Traduzidas/genética , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Fator de Necrose Tumoral alfa/metabolismo , Ensaio Tumoral de Célula-Tronco , Regulação para Cima/genética , Vemurafenib/farmacologia
6.
Sci Rep ; 9(1): 9776, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278310

RESUMO

Prostate cancer is the most commonly diagnosed cancer in men with African American men disproportionally suffering from the burden of this disease. Biomarkers that could discriminate indolent from aggressive and drug resistance disease are lacking. MicroRNAs are small non-coding RNAs that affect numerous physiological and pathological processes, including cancer development and have been suggested as biomarkers and therapeutic targets. In the present study, we investigated the role of miR-214 on prostate cancer cell survival/migration/invasion, cell cycle regulation, and apoptosis. miR-214 was differentially expressed between Caucasian and African American prostate cancer cells. Importantly, miR-214 overexpression in prostate cancer cells induced apoptosis, inhibiting cell proliferation and colony forming ability. miR-214 expression in prostate cancer cells also inhibited cell migration and 3D spheroid invasion. Mechanistically, miR-214 inhibited prostate cancer cell proliferation by targeting protein tyrosine kinase 6 (PTK6). Restoration of PTK6 expression attenuated the inhibitory effect of miR-214 on cell proliferation. Moreover, simultaneous inhibition of PTK6 by ibrutinib and miR-214 significantly reduced cell proliferation/survival. Our data indicates that miR-214 could act as a tumor suppressor in prostate cancer and could potentially be utilized as a biomarker and therapeutic target.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Proteínas Tirosina Quinases/genética , Regiões 3' não Traduzidas , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Interferência de RNA
7.
Inorg Chem Commun ; 64: 45-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26752972

RESUMO

A novel complex, [Cu(acetylethTSC)Cl]Cl•0.25C2H5OH 1 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide), was shown to have anti-proliferative activity against various colon and aggressive breast cancer cell lines. In vitro studies showed that complex 1 acted as a poison inhibitor of human topoisomerase IIα, which may account for the observed anti-cancer effects.

8.
Int J Mol Med ; 34(3): 880-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25016928

RESUMO

Fungal metabolites continue to show promise as a viable class of anticancer agents. In the present study, we investigated the efficacy of the fungal metabolite, fusarochromanone (FC101), for its antitumor activities in glioblastomas, which have a median survival of less than two years and a poor clinical response to surgical resection, radiation therapy and chemotherapy. Using clinically applicable doses, we demonstrated that FC101 induced glioblastoma apoptotic cell death via caspase dependent signaling, as indicated by the cleavage of poly(ADP-ribose) polymerase, glioblastoma (PARP). FC101 also induced differential reactive oxygen species (ROS) levels in glioblastoma cells, contrasting a defined role of oxidative stress in apoptotic cell death observed with other fungal metabolites. Furthermore, the antitumorigenic effects of FC101 on tumor cell migration were assessed. Cell migration assays revealed that FC101 significantly reduced the migratory capacity of glioblastomas, which are incredibly invasive tumors. Taken together, the present study establishes FC101 as a candidate anticancer agent for the cooperative treatment of glioblastomas.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Caspases/metabolismo , Cromonas/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Transdução de Sinais/efeitos dos fármacos , Actinina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...