Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Med Phys ; 44(4): 1500-1513, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28112399

RESUMO

PURPOSE: Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. METHODS: The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter (WED) and regional CTDIvol as variables and (b) using the same exponential relationship with the addition of categorical variables such as scanner model and organ to provide a more complete estimate of factors that may affect organ dose. Finally, estimates from generated models were compared to those obtained from SSDE and ImPACT. RESULTS: The Generalized Linear Model yielded organ dose estimates that were significantly closer to the MC reference organ dose values than were organ doses estimated via SSDE or ImPACT. Moreover, the GLM estimates were better than those of SSDE or ImPACT irrespective of whether or not categorical variables were used in the model. While the improvement associated with a categorical variable was substantial in estimating breast dose, the improvement was minor for other organs. CONCLUSIONS: The GLM approach extends the current CT dose estimation methods by allowing the use of additional variables to more accurately estimate organ dose from TCM scans. Thus, this approach may be able to overcome the limitations of current CT dose metrics to provide more accurate estimates of patient dose, in particular, dose to organs with considerable variability across the population.


Assuntos
Radiometria/métodos , Tomografia Computadorizada por Raios X , Adulto , Criança , Feminino , Humanos , Modelos Lineares , Masculino , Método de Monte Carlo , Radiometria/normas , Padrões de Referência
3.
Med Phys ; 42(2): 958-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652508

RESUMO

PURPOSE: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (DW). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. METHODS: 101 thoracic and 82 abdomen/pelvis scans from clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, DW, and approximated water equivalent diameter (DWa)] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDIvol to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. RESULTS: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three differently (global, regional, and middle slice) reported DW and DWa than they were for ED, but the differences were not statistically significant. However, for lung dose, computed correlations using water equivalent diameter calculated in the middle of the image data (DW,middle) and averaged over the low attenuating region of lung (DW,regional) were statistically significantly higher than correlations of normalized lung dose with ED. CONCLUSIONS: To conclude, effective diameter and water equivalent diameter are very similar in abdominal regions; however, their difference becomes noticeable in lungs. Water equivalent diameter, specifically reported as a regional average and middle of scan volume, was shown to be better predictors of lung dose. Therefore, an attenuation-based size metric (water equivalent diameter) is recommended because it is more robust across different anatomic regions. Additionally, it was observed that the regional size metric reported as a single value averaged over a region of interest and the size metric calculated from a single slice/image chosen from the middle of the scan volume are highly correlated for these specific patient models and scan types.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X , Adulto , Feminino , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Radiografia Abdominal , Radiografia Torácica , Radiometria
4.
Med Phys ; 42(2): 1080-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652520

RESUMO

PURPOSE: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. METHODS: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. RESULTS: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. CONCLUSIONS: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.


Assuntos
Método de Monte Carlo , Tomografia Computadorizada Multidetectores , Humanos , Imagens de Fantasmas , Doses de Radiação , Radiometria , Reprodutibilidade dos Testes
5.
Med Phys ; 41(11): 112101, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370652

RESUMO

PURPOSE: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purpose of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. METHODS: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of mcnpx, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x-y-z TCM, and z-axis-only TCM to obtain dose estimates. This allowed direct comparisons between measured and simulated dose values under each condition of phantom, location, and scan to be made. RESULTS: For FTC scans, the percent root mean square (RMS) difference between measurements and simulations was within 5% across all phantoms. For TCM scans, the percent RMS of the difference between measured and simulated values when using detailed TCM and z-axis-only TCM simulations was 4.5% and 13.2%, respectively. For the anthropomorphic phantom, the difference between TCM measurements and detailed TCM and z-axis-only TCM simulations was 1.2% and 8.9%, respectively. For FTC measurements and simulations, the percent RMS of the difference was 5.0%. CONCLUSIONS: This work demonstrated that the Monte Carlo model developed provided good agreement between measured and simulated values under both simple and complex geometries including an anthropomorphic phantom. This work also showed the increased dose differences for z-axis-only TCM simulations, where considerable modulation in the x-y plane was present due to the shape of the rectangular water phantom. Results from this investigation highlight details that need to be included in Monte Carlo simulations of TCM CT scans in order to yield accurate, clinically viable assessments of patient dosimetry.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Tomografia Computadorizada Espiral/instrumentação , Humanos , Doses de Radiação
6.
Med Phys ; 40(9): 091901, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24007152

RESUMO

PURPOSE: CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. METHODS: Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. RESULTS: The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%-65%, and overestimated eye lens dose by 33%-106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%-82% relative to voxelized model simulations. CONCLUSIONS: CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still useful as a conservative predictor of dose for CT neuroperfusion studies. AAPM Report No. 111 style measurements are a better predictor of both peak skin and eye lens dose than CTDIvol and ImPACT for the patient models used in this study. It should be remembered that both the AAPM Report No. 111 peak dose metric and CTDIvol dose metric are dose indices and were not intended to represent actual organ doses.


Assuntos
Cristalino/efeitos da radiação , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Perfusão , Doses de Radiação , Relatório de Pesquisa , Pele/efeitos da radiação , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Sociedades Médicas , Fatores de Tempo , Tomografia Computadorizada por Raios X
7.
Med Phys ; 40(5): 051903, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635273

RESUMO

PURPOSE: In AAPM Task Group 204, the size-specific dose estimate (SSDE) was developed by providing size adjustment factors which are applied to the Computed Tomography (CT) standardized dose metric, CTDI(vol). However, that work focused on fixed tube current scans and did not specifically address tube current modulation (TCM) scans, which are currently the majority of clinical scans performed. The purpose of this study was to extend the SSDE concept to account for TCM by investigating the feasibility of using anatomic and organ specific regions of scanner output to improve accuracy of dose estimates. METHODS: Thirty-nine adult abdomen/pelvis and 32 chest scans from clinically indicated CT exams acquired on a multidetector CT using TCM were obtained with Institutional Review Board approval for generating voxelized models. Along with image data, raw projection data were obtained to extract TCM functions for use in Monte Carlo simulations. Patient size was calculated using the effective diameter described in TG 204. In addition, the scanner-reported CTDI(vo)l (CTDI(vol),global) was obtained for each patient, which is based on the average tube current across the entire scan. For the abdomen/pelvis scans, liver, spleen, and kidneys were manually segmented from the patient datasets; for the chest scans, lungs and for female models only, glandular breast tissue were segmented. For each patient organ doses were estimated using Monte Carlo Methods. To investigate the utility of regional measures of scanner output, regional and organ anatomic boundaries were identified from image data and used to calculate regional and organ-specific average tube current values. From these regional and organ-specific averages, CTDI(vol) values, referred to as regional and organ-specific CTDI(vol), were calculated for each patient. Using an approach similar to TG 204, all CTDI(vol) values were used to normalize simulated organ doses; and the ability of each normalized dose to correlate with patient size was investigated. RESULTS: For all five organs, the correlations with patient size increased when organ doses were normalized by regional and organ-specific CTDI(vol) values. For example, when estimating dose to the liver, CTDI(vol),global yielded a R(2) value of 0.26, which improved to 0.77 and 0.86, when using the regional and organ-specific CTDI(vol) for abdomen and liver, respectively. For breast dose, the global CTDI(vol) yielded a R(2) value of 0.08, which improved to 0.58 and 0.83, when using the regional and organ-specific CTDI(vol) for chest and breasts, respectively. The R(2) values also increased once the thoracic models were separated for the analysis into females and males, indicating differences between genders in this region not explained by a simple measure of effective diameter. CONCLUSIONS: This work demonstrated the utility of regional and organ-specific CTDI(vol) as normalization factors when using TCM. It was demonstrated that CTDI(vol),global is not an effective normalization factor in TCM exams where attenuation (and therefore tube current) varies considerably throughout the scan, such as abdomen/pelvis and even thorax. These exams can be more accurately assessed for dose using regional CTDI(vol) descriptors that account for local variations in scanner output present when TCM is employed.


Assuntos
Modelos Biológicos , Doses de Radiação , Tomografia Computadorizada por Raios X , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Método de Monte Carlo
8.
Med Phys ; 39(8): 5212-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894446

RESUMO

PURPOSE: Most methods to estimate patient dose from computed tomography (CT) exams have been developed based on fixed tube current scans. However, in current clinical practice, many CT exams are performed using tube current modulation (TCM). Detailed information about the TCM function is difficult to obtain and therefore not easily integrated into patient dose estimate methods. The purpose of this study was to investigate the accuracy of organ dose estimates obtained using methods that approximate the TCM function using more readily available data compared to estimates obtained using the detailed description of the TCM function. METHODS: Twenty adult female models generated from actual patient thoracic CT exams and 20 pediatric female models generated from whole body PET∕CT exams were obtained with IRB (Institutional Review Board) approval. Detailed TCM function for each patient was obtained from projection data. Monte Carlo based models of each scanner and patient model were developed that incorporated the detailed TCM function for each patient model. Lungs and glandular breast tissue were identified in each patient model so that organ doses could be estimated from simulations. Three sets of simulations were performed: one using the original detailed TCM function (x, y, and z modulations), one using an approximation to the TCM function (only the z-axis or longitudinal modulation extracted from the image data), and the third was a fixed tube current simulation using a single tube current value which was equal to the average tube current over the entire exam. Differences from the reference (detailed TCM) method were calculated based on organ dose estimates. Pearson's correlation coefficients were calculated between methods after testing for normality. Equivalence test was performed to compare the equivalence limit between each method (longitudinal approximated TCM and fixed tube current method) and the detailed TCM method. Minimum equivalence limit was reported for each organ. RESULTS: Doses estimated using the longitudinal approximated TCM resulted in small differences from doses obtained using the detailed TCM function. The calculated root-mean-square errors (RMSE) for adult female chest simulations were 9% and 3% for breasts and lungs, respectively; for pediatric female chest and whole body simulations RMSE were 9% and 7% for breasts and 3% and 1% for lungs, respectively. Pearson's correlation coefficients were consistently high for the longitudinal approximated TCM method, ranging from 0.947 to 0.999, compared to the fixed tube current value ranging from 0.8099 to 0.9916. In addition, an equivalence test illustrated that across all models the longitudinal approximated TCM is equivalent to the detailed TCM function within up to 3% for lungs and breasts. CONCLUSIONS: While the best estimate of organ dose requires the detailed description of the TCM function for each patient, extracting these values can be difficult. The presented results show that an approximation using available data extracted from the DICOM header provides organ dose estimates with RMSE of less than 10%. On the other hand, the use of the overall average tube current as a single tube current value was shown to result in poor and inconsistent estimates of organ doses.


Assuntos
Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Mama/patologia , Criança , Simulação por Computador , Desenho de Equipamento , Feminino , Humanos , Pulmão/patologia , Método de Monte Carlo , Doses de Radiação , Reprodutibilidade dos Testes
9.
AJR Am J Roentgenol ; 198(2): 412-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22268186

RESUMO

OBJECTIVE: The purpose of our study was to accurately estimate the radiation dose to skin and the eye lens from clinical CT brain perfusion studies, investigate how well scanner output (expressed as volume CT dose index [CTDI(vol)]) matches these estimated doses, and investigate the efficacy of eye lens dose reduction techniques. MATERIALS AND METHODS: Peak skin dose and eye lens dose were estimated using Monte Carlo simulation methods on a voxelized patient model and 64-MDCT scanners from four major manufacturers. A range of clinical protocols was evaluated. CTDI(vol) for each scanner was obtained from the scanner console. Dose reduction to the eye lens was evaluated for various gantry tilt angles as well as scan locations. RESULTS: Peak skin dose and eye lens dose ranged from 81 mGy to 348 mGy, depending on the scanner and protocol used. Peak skin dose and eye lens dose were observed to be 66-79% and 59-63%, respectively, of the CTDI(vol) values reported by the scanners. The eye lens dose was significantly reduced when the eye lenses were not directly irradiated. CONCLUSION: CTDI(vol) should not be interpreted as patient dose; this study has shown it to overestimate dose to the skin or eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy.


Assuntos
Encéfalo/diagnóstico por imagem , Cristalino/efeitos da radiação , Doses de Radiação , Pele/efeitos da radiação , Tomografia Computadorizada por Raios X/métodos , Protocolos Clínicos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Lesões por Radiação/prevenção & controle , Radiometria/métodos
10.
Med Phys ; 38(2): 820-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452719

RESUMO

PURPOSE: A recent work has demonstrated the feasibility of estimating the dose to individual organs from multidetector CT exams using patient-specific, scanner-independent CTDIvol-to-organ-dose conversion coefficients. However, the previous study only investigated organ dose to a single patient model from a full-body helical CT scan. The purpose of this work was to extend the validity of this dose estimation technique to patients of any size undergoing a common clinical exam. This was done by determining the influence of patient size on organ dose conversion coefficients generated for typical abdominal CT exams. METHODS: Monte Carlo simulations of abdominal exams were performed using models of 64-slice MDCT scanners from each of the four major manufacturers to obtain dose to radiosensitive organs for eight patient models of varying size, age, and gender. The scanner-specific organ doses were normalized by corresponding CTDIvol values and averaged across scanners to obtain scanner-independent CTDIvol-to-organ-dose conversion coefficients for each patient model. In order to obtain a metric for patient size, the outer perimeter of each patient was measured at the central slice of the abdominal scan region. Then, the relationship between CTDIvol-to-organ-dose conversion coefficients and patient perimeter was investigated for organs that were directly irradiated by the abdominal scan. These included organs that were either completely ("fully irradiated") or partly ("partially irradiated") contained within the abdominal exam region. Finally, dose to organs that were not at all contained within the scan region ("nonirradiated") were compared to the doses delivered to fully irradiated organs. RESULTS: CTDIvol-to-organ-dose conversion coefficients for fully irradiated abdominal organs had a strong exponential correlation with patient perimeter. Conversely, partially irradiated organs did not have a strong dependence on patient perimeter. In almost all cases, the doses delivered to nonirradiated organs were less than 5%, on average across patient models, of the mean dose of the fully irradiated organs. CONCLUSIONS: This work demonstrates the feasibility of calculating patient-specific, scanner-independent CTDIvol-to-organ-dose conversion coefficients for fully irradiated organs in patients undergoing typical abdominal CT exams. A method to calculate patient-specific, scanner-specific, and exam-specific organ dose estimates that requires only knowledge of the CTDIvol for the scan protocol and the patient's perimeter is thus possible. This method will have to be extended in future studies to include organs that are partially irradiated. Finally, it was shown that, in most cases, the doses to nonirradiated organs were small compared to the dose to fully irradiated organs.


Assuntos
Tamanho Corporal , Doses de Radiação , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Imagens de Fantasmas , Medicina de Precisão , Reprodutibilidade dos Testes
11.
Med Phys ; 37(4): 1816-25, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20443504

RESUMO

PURPOSE: Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDIvol measurements to account for differences in MDCT scanners that lead to organ dose differences. METHODS: Monte Carlo simulations of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDIvol values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDIvol value for those acquisition conditions. RESULTS: CTDIvol values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDIvoI values, the differences across scanners become very small. For the CTDIvol, normalized dose values the CoVs across scanners for different organs ranged from a minimum of 2.4% (for skin tissue) to a maximum of 8.5% (for the adrenals) with a mean of 5.2%. CONCLUSIONS: This work has revealed that there is considerable variation among modern MDCT scanners in both CTDIvol and organ dose values. Because these variations are similar, CTDIvol can be used as a normalization factor with excellent results. This demonstrates the feasibility of establishing scanner-independent organ dose estimates by using CTDIvol to account for the differences between scanners.


Assuntos
Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/instrumentação , Medula Óssea/patologia , Osso e Ossos/patologia , Simulação por Computador , Desenho de Equipamento , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Software , Distribuição Tecidual , Tomografia Computadorizada por Raios X/métodos
12.
Med Phys ; 36(6): 2154-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19610304

RESUMO

The purpose of this study was to present a method for generating x-ray source models for performing Monte Carlo (MC) radiation dosimetry simulations of multidetector row CT (MDCT) scanners. These so-called "equivalent" source models consist of an energy spectrum and filtration description that are generated based wholly on the measured values and can be used in place of proprietary manufacturer's data for scanner-specific MDCT MC simulations. Required measurements include the half value layers (HVL1 and HVL2) and the bowtie profile (exposure values across the fan beam) for the MDCT scanner of interest. Using these measured values, a method was described (a) to numerically construct a spectrum with the calculated HVLs approximately equal to those measured (equivalent spectrum) and then (b) to determine a filtration scheme (equivalent filter) that attenuates the equivalent spectrum in a similar fashion as the actual filtration attenuates the actual x-ray beam, as measured by the bowtie profile measurements. Using this method, two types of equivalent source models were generated: One using a spectrum based on both HVL1 and HVL2 measurements and its corresponding filtration scheme and the second consisting of a spectrum based only on the measured HVL1 and its corresponding filtration scheme. Finally, a third type of source model was built based on the spectrum and filtration data provided by the scanner's manufacturer. MC simulations using each of these three source model types were evaluated by comparing the accuracy of multiple CT dose index (CTDI) simulations to measured CTDI values for 64-slice scanners from the four major MDCT manufacturers. Comprehensive evaluations were carried out for each scanner using each kVp and bowtie filter combination available. CTDI experiments were performed for both head (16 cm in diameter) and body (32 cm in diameter) CTDI phantoms using both central and peripheral measurement positions. Both equivalent source model types result in simulations with an average root mean square (RMS) error between the measured and simulated values of approximately 5% across all scanner and bowtie filter combinations, all kVps, both phantom sizes, and both measurement positions, while data provided from the manufacturers gave an average RMS error of approximately 12% pooled across all conditions. While there was no statistically significant difference between the two types of equivalent source models, both of these model types were shown to be statistically significantly different from the source model based on manufacturer's data. These results demonstrate that an equivalent source model based only on measured values can be used in place of manufacturer's data for Monte Carlo simulations for MDCT dosimetry.


Assuntos
Algoritmos , Carga Corporal (Radioterapia) , Filtração/métodos , Modelos Biológicos , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Humanos , Método de Monte Carlo , Eficiência Biológica Relativa , Espalhamento de Radiação
13.
Med Phys ; 36(3): 1025-38, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19378763

RESUMO

The larger coverage afforded by wider z-axis beams in multidetector CT (MDCT) creates larger cone angles and greater beam divergence, which results in substantial surface dose variation for helical and contiguous axial scans. This study evaluates the variation of absorbed radiation dose in both cylindrical and anthropomorphic phantoms when performing helical or contiguous axial scans. The approach used here was to perform Monte Carlo simulations of a 64 slice MDCT. Simulations were performed with different radiation profiles (simulated beam widths) for a given collimation setting (nominal beam width) and for different pitch values and tube start angles. The magnitude of variation at the surface was evaluated under four different conditions: (a) a homogeneous CTDI phantom with different combinations of pitch and simulated beam widths, (b) a heterogeneous anthropomorphic phantom with one measured beam collimation and various pitch values, (c) a homogeneous CTDI phantom with fixed beam collimation and pitch, but with different tube start angles, and (d) pitch values that should minimize variations of surface dose-evaluated for both homogeneous and heterogeneous phantoms. For the CTDI phantom simulations, peripheral dose patterns showed variation with percent ripple as high as 65% when pitch is 1.5 and simulated beam width is equal to the nominal collimation. For the anterior surface dose on an anthropomorphic phantom, the percent ripple was as high as 40% when the pitch is 1.5 and simulated beam width is equal to the measured beam width. Low pitch values were shown to cause beam overlaps which created new peaks. Different x-ray tube start angles create shifts of the peripheral dose profiles. The start angle simulations showed that for a given table position, the surface dose could vary dramatically with minimum values that were 40% of the peak when all conditions are held constant except for the start angle. The last group of simulations showed that an "ideal" pitch value can be determined which reduces surface dose variations, but this pitch value must take into account the measured beam width. These results reveal the complexity of estimating surface dose and demonstrate a range of dose variability at surface positions for both homogeneous cylindrical and heterogeneous anthropomorphic phantoms. These findings have potential implications for small-sized dosimeter measurements in phantoms, such as with TLDs or small Farmer chambers.


Assuntos
Tomografia Computadorizada por Raios X/estatística & dados numéricos , Antropometria , Fenômenos Biofísicos , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/instrumentação , Tomografia Computadorizada por Raios X/métodos
14.
Med Phys ; 36(12): 5654-64, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095278

RESUMO

PURPOSE: Previous work has demonstrated that there are significant dose variations with a sinusoidal pattern on the peripheral of a CTDI 32 cm phantom or on the surface of an anthropomorphic phantom when helical CT scanning is performed, resulting in the creation of "hot" spots or "cold" spots. The purpose of this work was to perform preliminary investigations into the feasibility of exploiting these variations to reduce dose to selected radiosensitive organs solely by varying the tube start angle in CT scans. METHODS: Radiation dose to several radiosensitive organs (including breasts, thyroid, uterus, gonads, and eye lenses) resulting from MDCT scans were estimated using Monte Carlo simulation methods on voxelized patient models, including GSF's Baby, Child, and Irene. Dose to fetus was also estimated using four pregnant female models based on CT images of the pregnant patients. Whole-body scans were simulated using 120 kVp, 300 mAs, both 28.8 and 40 mm nominal collimations, and pitch values of 1.5, 1.0, and 0.75 under a wide range of start angles (0 degree-340 degrees in 20 degrees increments). The relationship between tube start angle and organ dose was examined for each organ, and the potential dose reduction was calculated. RESULTS: Some organs exhibit a strong dose variation, depending on the tube start angle. For small peripheral organs (e.g., the eye lenses of the Baby phantom at pitch 1.5 with 40 mm collimation), the minimum dose can be 41% lower than the maximum dose, depending on the tube start angle. In general, larger dose reductions occur for smaller peripheral organs in smaller patients when wider collimation is used. Pitch 1.5 and pitch 0.75 have different mechanisms of dose reduction. For pitch 1.5 scans, the dose is usually lowest when the tube start angle is such that the x-ray tube is posterior to the patient when it passes the longitudinal location of the organ. For pitch 0.75 scans, the dose is lowest when the tube start angle is such that the x-ray tube is anterior to the patient when it passes the longitudinal location of the organ. CONCLUSIONS: Helical MDCT scanning at pitch 1.5 and pitch 0.75 results in "cold spots" and "hot spots" that are created both at surface and in-depth locations within patients. For organs that have a relatively small longitudinal extent, dose can vary considerably with different start angles. While current MDCT systems do not provide the user with the ability to control the tube start angle, these results indicate that in these specific situations (pitch 1.5 or pitch 0.75, small organs and especially small patients), there could be significant dose savings to organs if that functionality would be provided.


Assuntos
Método de Monte Carlo , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Adulto , Criança , Feminino , Humanos , Lactente , Modelos Biológicos , Imagens de Fantasmas , Gravidez , Fatores de Tempo , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...