Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Obstet Gynecol ; 28(3): 211-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27115750

RESUMO

PURPOSE OF REVIEW: There has been increasing interest in developing assisted reproductive technologies to overcome failure at fertilization and early embryonic arrest. Some of the affected patients harbor too few copies of mitochondrial DNA (mtDNA) in their eggs at the time of fertilization, which results in developmental failure. RECENT FINDINGS: In the last 3-5 years, there has been a drive to overcome mtDNA deficiency through mitochondrial supplementation protocols using autologous populations of mitochondrial DNA so as not to perturb the offspring's genetic identity or mediate a series of side-effects because of the mixing of two distinct populations of mitochondrial DNA. It is evident that there is strict regulation of mitochondrial DNA copy number from the primordial germ cell through to the time when tissues are specified during organogenesis. Supplementation of oocytes can give rise to better quality embryos, enhanced blastocyst rates, and ongoing pregnancies. It utilizes a key mitochondrial DNA replication event that takes place shortly after fertilization to stabilize the embryonic genome. SUMMARY: These findings provide a rationale for undertaking mitochondrial supplementation and propose a mechanism to explain why the process can enhance embryo development. They also take the approach a step closer to clinical practice.


Assuntos
Blastocisto/fisiologia , DNA Mitocondrial/genética , Oócitos/fisiologia , Técnicas de Reprodução Assistida , Replicação do DNA , Desenvolvimento Embrionário , Feminino , Humanos
2.
Sci Rep ; 6: 23229, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987907

RESUMO

An increasing number of women fail to achieve pregnancy due to either failed fertilization or embryo arrest during preimplantation development. This often results from decreased oocyte quality. Indeed, reduced mitochondrial DNA copy number (mitochondrial DNA deficiency) may disrupt oocyte quality in some women. To overcome mitochondrial DNA deficiency, whilst maintaining genetic identity, we supplemented pig oocytes selected for mitochondrial DNA deficiency, reduced cytoplasmic maturation and lower developmental competence, with autologous populations of mitochondrial isolate at fertilization. Supplementation increased development to blastocyst, the final stage of preimplantation development, and promoted mitochondrial DNA replication prior to embryonic genome activation in mitochondrial DNA deficient oocytes but not in oocytes with normal levels of mitochondrial DNA. Blastocysts exhibited transcriptome profiles more closely resembling those of blastocysts from developmentally competent oocytes. Furthermore, mitochondrial supplementation reduced gene expression patterns associated with metabolic disorders that were identified in blastocysts from mitochondrial DNA deficient oocytes. These results demonstrate the importance of the oocyte's mitochondrial DNA investment in fertilization outcome and subsequent embryo development to mitochondrial DNA deficient oocytes.


Assuntos
DNA Mitocondrial/genética , Desenvolvimento Embrionário , Mitocôndrias/metabolismo , Oócitos/metabolismo , Sus scrofa/genética , Animais , Blastocisto/metabolismo , Meios de Cultura/química , Variações do Número de Cópias de DNA , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Mitocôndrias/genética , Gravidez , Sus scrofa/embriologia , Suínos
3.
Stem Cells Dev ; 25(3): 239-50, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608563

RESUMO

The vast majority of cellular ATP is produced by the oxidative phosphorylation (OXPHOS) system, which comprises the four complexes of the electron transfer chain plus the ATP synthase. Complex I is the largest of the OXPHOS complexes, and mutation of the genes encoding either the subunits or assembly factors of Complex I can result in Complex I deficiency, which is the most common OXPHOS disorder. Mutations in the Complex I gene NDUFS4 lead to Leigh syndrome, which is the most frequent presentation of Complex I deficiency in children presenting with progressive encephalopathy shortly after birth. Symptoms include motor and intellectual retardation, often accompanied by dystonia, ataxia, and growth retardation, and most patients die by 3 years of age. To understand the origins of this disease, we have generated a series of mouse embryonic stem cell lines from blastocysts that were wild type, heterozygous, and homozygous for the deletion of the Ndufs4 gene. We have demonstrated their pluripotency and potential to differentiate into all cell types of the body. Although the loss of Ndufs4 did not affect the stability of the mitochondrial and nuclear genomes, there were significant differences in patterns of chromosomal gene expression following both spontaneous differentiation and directed neural differentiation into astrocytes. The defect also affected the potential of the cells to generate beating embryoid bodies. These outcomes demonstrate that defects associated with Complex I deficiency affect early gene expression patterns, which escalate during early and later stages of differentiation and are mediated by the defect and not other chromosomal or mitochondrial DNA defects.


Assuntos
Astrócitos/citologia , Complexo I de Transporte de Elétrons/metabolismo , Deleção de Genes , Doença de Leigh/genética , Neurogênese , Animais , Astrócitos/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
4.
Mol Reprod Dev ; 80(4): 297-314, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23426876

RESUMO

In order to understand how in vitro culture affects embryonic quality, we analyzed survival and global gene expression in bovine blastocysts after exposure to increased oxidative stress conditions. Two pro-oxidant agents, one that acts extracellularly by promoting reactive oxygen species (ROS) production (0.01 mM 2,2'-azobis (2-amidinopropane) dihydrochloride [AAPH]) or another that acts intracellularly by inhibiting glutathione synthesis (0.4 mM buthionine sulfoximine [BSO]) were added separately to in vitro culture media from Day 3 (8-16-cell stage) onward. Transcriptomic analysis was then performed on resulting Day-7 blastocysts. In the literature, these two pro-oxidant conditions were shown to induce delayed degeneration in a proportion of Day-8 blastocysts. In our experiment, no morphological difference was visible, but AAPH tended to decrease the blastocyst rate while BSO significantly reduced it, indicating a differential impact on the surviving population. At the transcriptomic level, blastocysts that survived either pro-oxidant exposure showed oxidative stress and an inflammatory response (ARRB2), although AAPH induced higher disturbances in cellular homeostasis (SERPINE1). Functional genomics of the BSO profile, however, identified differential expression of genes related to glycine metabolism and energy metabolism (TPI1). These differential features might be indicative of pre-degenerative blastocysts (IGFBP7) in the AAPH population whereas BSO exposure would select the most viable individuals (TKDP1). Together, these results illustrate how oxidative disruption of pre-attachment development is associated with systematic up-regulation of several metabolic markers. Moreover, it indicates that a better capacity to survive anti-oxidant depletion may allow for the survival of blastocysts with a quieter metabolism after compaction.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/fisiologia , Amidinas/farmacologia , Animais , Antioxidantes/metabolismo , Blastocisto/citologia , Bovinos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
5.
Biol Reprod ; 86(2): 50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075474

RESUMO

To understand the compromised survival of embryos derived from assisted reproductive techniques, transcriptome survey of early embryonic development has shown the impact of in vitro culture environment on gene expression in bovine or other living species. However, how the differentially expressed genes translate into developmentally compromised embryos is unresolved. We therefore aimed to characterize transcriptomic markers expressed by bovine blastocysts cultured in conditions that are known to impair embryo development. As increasing glucose concentrations has been shown to be stressful for early cleavage stages of mammalian embryos and to decrease subsequent blastocyst survival, in vitro-matured/fertilized bovine zygotes were cultured in control (0.2 mM) or high-glucose (5 mM) conditions until the 8- to 16-cell stage, and then transferred to control media until they reached the blastocyst stage. The concentration of 5 mM glucose was chosen as a stress treatment because there was a significant effect on blastocyst rate without the treatment's being lethal as with 10 mM. Microarray analysis revealed gene expression differences unrelated to embryo sex or hatching. Overrepresented processes among differentially expressed genes in treated blastocysts were extracellular matrix signalling, calcium signaling, and energy metabolism. On a pathophysiological level, higher glucose treatment impacts pathways associated with diabetes and tumorigenesis through genes controlling the Warburg effect, i.e., emphasis on use of anaerobic glycolysis rather than oxidative phosphorylation. These results allowed us to conclude that disruption of in vitro preattachment development is concomitant with gene expression modifications involved in metabolic control.


Assuntos
Blastocisto/metabolismo , Fase de Clivagem do Zigoto/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Hiperglicemia/metabolismo , Animais , Blastocisto/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Bovinos , Células Cultivadas , Fase de Clivagem do Zigoto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião de Mamíferos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glucose/farmacologia , Técnicas In Vitro , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...