Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102829, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236769

RESUMO

Dendritic spines are protrusions on dendrites forming the postsynaptic aspect of excitatory connections within the brain. Spine morphology is associated with synaptic functional strength and the spatial regulation of protein nanodomains within dendritic spines is an important determinant of spine structure and function. Here, we present a protocol to resolve the nanoscale localization of proteins within dendritic spines using structured illumination microscopy. We describe steps for the structural analysis of dendritic spine parameters, protein localization analysis, and data processing. For complete details on the use and execution of this protocol, please refer to Bjornson et al.1.


Assuntos
Espinhas Dendríticas , Microscopia , Espinhas Dendríticas/metabolismo , Microscopia/métodos , Iluminação , Neurônios/metabolismo
2.
iScience ; 26(9): 107566, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664580

RESUMO

The effects of repeated stress on cognitive impairment are thought to be mediated, at least in part, by reductions in the stability of dendritic spines in brain regions critical for proper learning and memory, including the hippocampus. Small GTPases are particularly potent regulators of dendritic spine formation, stability, and morphology in hippocampal neurons. Through the use of small GTPase protein profiling in mice, we identify increased levels of synaptic Rap1 in the hippocampal CA3 region in response to escalating, intermittent stress. We then demonstrate that increased Rap1 in the CA3 is sufficient in and of itself to produce stress-relevant dendritic spine and cognitive phenotypes. Further, using super-resolution imaging, we investigate how the pattern of Rap1 trafficking to synapses likely underlies its effects on the stability of select dendritic spine subtypes. These findings illuminate the involvement of aberrant Rap1 regulation in the hippocampus in contributing to the psychobiological effects of stress.

3.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461459

RESUMO

The effects of repeated stress on cognitive impairment are thought to be mediated, at least in part, by reductions in the stability of dendritic spines in brain regions critical for proper learning and memory, including the hippocampus. Small GTPases are particularly potent regulators of dendritic spine formation, stability, and morphology in hippocampal neurons. Through the use of small GTPase protein profiling in mice, we identify increased levels of synaptic Rap1 in the hippocampal CA3 region in response to escalating, intermittent stress. We then demonstrate that increased Rap1 in the CA3 is sufficient in and of itself to produce stress-relevant dendritic spine and cognitive phenotypes. Further, using super-resolution imaging, we investigate how the pattern of Rap1 trafficking to synapses likely underlies its effects on the stability of select dendritic spine subtypes. These findings illuminate the involvement of aberrant Rap1 regulation in the hippocampus in contributing to the psychobiological effects of stress.

4.
PLoS Biol ; 20(2): e3001502, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113852

RESUMO

Mounting epidemiologic and scientific evidence indicates that many psychiatric disorders originate from a complex interplay between genetics and early life experiences, particularly in the womb. Despite decades of research, our understanding of the precise prenatal and perinatal experiences that increase susceptibility to neurodevelopmental disorders remains incomplete. Sleep apnea (SA) is increasingly common during pregnancy and is characterized by recurrent partial or complete cessations in breathing during sleep. SA causes pathological drops in blood oxygen levels (intermittent hypoxia, IH), often hundreds of times each night. Although SA is known to cause adverse pregnancy and neonatal outcomes, the long-term consequences of maternal SA during pregnancy on brain-based behavioral outcomes and associated neuronal functioning in the offspring remain unknown. We developed a rat model of maternal SA during pregnancy by exposing dams to IH, a hallmark feature of SA, during gestational days 10 to 21 and investigated the consequences on the offspring's forebrain synaptic structure, synaptic function, and behavioral phenotypes across multiples stages of development. Our findings represent a rare example of prenatal factors causing sexually dimorphic behavioral phenotypes associated with excessive (rather than reduced) synapse numbers and implicate hyperactivity of the mammalian target of rapamycin (mTOR) pathway in contributing to the behavioral aberrations. These findings have implications for neuropsychiatric disorders typified by superfluous synapse maintenance that are believed to result, at least in part, from largely unknown insults to the maternal environment.


Assuntos
Comportamento Animal , Hipóxia/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Sinapses/patologia , Animais , Transtorno Autístico/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/fisiopatologia , Ratos Sprague-Dawley , Caracteres Sexuais , Síndromes da Apneia do Sono , Serina-Treonina Quinases TOR
5.
Neuron ; 109(9): 1479-1496.e6, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33765445

RESUMO

The Akt family of kinases exerts many of its cellular effects via the activation of the mammalian target of rapamycin (mTOR) kinase through a series of intermediary proteins. Multiple lines of evidence have identified Akt-family kinases as candidate schizophrenia and bipolar disorder genes. Although dysfunction of the prefrontal cortex (PFC) is a key feature of both schizophrenia and bipolar disorder, no studies have comprehensively assessed potential alterations in Akt-mTOR pathway activity in the PFC of either disorder. Here, we examined the activity and expression profile of key proteins in the Akt-mTOR pathway in bipolar disorder and schizophrenia homogenates from two different PFC subregions. Our findings identify reduced Akt-mTOR PFC signaling in a subset of bipolar disorder subjects. Using a reverse-translational approach, we demonstrated that Akt hypofunction in the PFC is sufficient to give rise to key cognitive phenotypes that are paralleled by alterations in synaptic connectivity and function.


Assuntos
Transtorno Bipolar/metabolismo , Disfunção Cognitiva/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transtorno Bipolar/patologia , Transtorno Bipolar/fisiopatologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Masculino , Neurônios/patologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia
6.
Cereb Cortex ; 30(1): 59-71, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31220216

RESUMO

While research has identified alterations in dorsolateral prefrontal cortical function as a key factor to the etiology of bipolar disorder, few studies have uncovered robust changes in protein signal transduction pathways in this disorder. Given the direct relevance of protein-based expressional alterations to cellular functions and because many of the key regulatory mechanisms for the disease pathogenesis likely include alterations in protein activity rather than changes in expression alone, the identification of alterations in discrete signal transduction pathways in bipolar disorder would have broad implications for understanding the disease pathophysiology. As prior microarray data point to a previously unrecognized involvement of the RhoA network in bipolar disorder, here we investigate the protein expression and activity of key components of a RhoA signal transduction pathway in dorsolateral prefrontal cortical homogenates from subjects with bipolar disorder. The results of this investigation implicate overactivation of prefrontal cortical RhoA signaling in specific subtypes of bipolar disorder. The specificity of these findings is demonstrated by a lack of comparable changes in schizophrenia; however, our findings do identify convergence between both disorders at the level of activity-mediated actin cytoskeletal regulation. These findings have implications for understanding the altered cortical synaptic connectivity of bipolar disorder.


Assuntos
Transtorno Bipolar/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adulto , Transtorno Bipolar/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/complicações , Transdução de Sinais
7.
Front Immunol ; 10: 1479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333645

RESUMO

Sleep disordered breathing (SDB) affects 3-5% of the pediatric population, including neonates who are highly susceptible due to an underdeveloped ventilatory control system, and REM-dominated sleep. Although pediatric SDB is associated with poor cognitive outcomes, very little research has focused on models of pediatric SDB, particularly in neonates. In adults and neonates, intermittent hypoxia (IH), a hallmark of SDB, recapitulates multiple physiological aspects of severe SDB, including neuronal apoptosis, sex-specific cognitive deficits, and neuroinflammation. Microglia, resident CNS immune cells, are important mediators of neurodevelopment and neuroinflammation, but to date, no studies have examined the molecular properties of microglia in the context of neonatal IH. Here, we tested the hypothesis that neonatal IH will enhance microglial inflammation and sex-specifically lead to long-term changes in working memory. To test this hypothesis, we exposed post-natal day (P1) neonates with dams to an established adult model of pathological IH consisting of 2 min cycles of 10.5% O2 followed by 21% O2, 8 h/day for 8 days. We then challenged the offspring with bacterial lipopolysaccharide (LPS) at P9 or at 6-8 weeks of age and immunomagnetically isolated microglia for gene expression analyses and RNA-sequencing. We also characterized neonatal CNS myeloid cell populations by flow cytometry analyses. Lastly, we examined working memory performance using a Y-maze in the young adults. Contrary to our hypothesis, we found that neonatal IH acutely augmented basal levels of microglial anti-inflammatory cytokines, attenuated microglial responses to LPS, and sex-specifically altered CNS myeloid populations. We identified multiple sex differences in basal neonatal microglial expression of genes related to chemotaxis, cognition, and aging. Lastly, we found that basal, but not LPS-induced, anti-inflammatory cytokines were augmented sex-specifically in the young adults, and that there was a significant interaction between sex and IH on basal working memory. Our results support the idea that neonates may be able to adapt to IH exposures that are pathological in adults. Further, they suggest that male and female microglial responses to IH are sex-specific, and that these sex differences in basal microglial gene expression may contribute to sexual dimorphisms in vulnerability to IH-induced cognitive disruption.


Assuntos
Citocinas/metabolismo , Hipóxia/metabolismo , Microglia/metabolismo , Síndromes da Apneia do Sono/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Microglia/efeitos dos fármacos , RNA-Seq , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Transcriptoma
8.
J Neurosci ; 39(29): 5634-5646, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31092585

RESUMO

Addictive behaviors, including relapse, are thought to depend in part on long-lasting drug-induced adaptations in dendritic spine signaling and morphology in the nucleus accumbens (NAc). While the influence of activity-dependent actin remodeling in these phenomena has been studied extensively, the role of microtubules and associated proteins remains poorly understood. We report that pharmacological inhibition of microtubule polymerization in the NAc inhibited locomotor sensitization to cocaine and contextual reward learning. We then investigated the roles of microtubule end-binding protein 3 (EB3) and SRC kinase in the neuronal and behavioral responses to volitionally administered cocaine. In synaptoneurosomal fractions from the NAc of self-administering male rats, the phosphorylation of SRC at an activating site was induced after 1 d of withdrawal, while EB3 levels were increased only after 30 d of withdrawal. Blocking SRC phosphorylation during early withdrawal by virally overexpressing SRCIN1, a negative regulator of SRC activity known to interact with EB3, abolished the incubation of cocaine craving in both male and female rats. Conversely, mimicking the EB3 increase observed after prolonged withdrawal increased the motivation to consume cocaine in male rats. In mice, the overexpression of either EB3 or SRCIN1 increased dendritic spine density and altered the spine morphology of NAc medium spiny neurons. Finally, a cocaine challenge after prolonged withdrawal recapitulated most of the synaptic protein expression profiles observed at early withdrawal. These findings suggest that microtubule-associated signaling proteins such as EB3 cooperate with actin remodeling pathways, notably SRC kinase activity, to establish and maintain long-lasting cellular and behavioral alterations following cocaine self-administration.SIGNIFICANCE STATEMENT Drug-induced morphological restructuring of dendritic spines of nucleus accumbens neurons is thought to be one of the cellular substrates of long-lasting drug-associated memories. The molecular basis of these persistent changes has remained incompletely understood. Here we implicate for the first time microtubule function in this process, together with key players such as microtubule-bound protein EB3 and synaptic SRC phosphorylation. We propose that microtubule and actin remodeling cooperate during withdrawal to maintain the plastic structural changes initially established by cocaine self-administration. This work opens new translational avenues for further characterization of microtubule-associated regulatory molecules as putative drug targets to tackle relapse to drug taking.


Assuntos
Cocaína/administração & dosagem , Locomoção/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Oncogênica pp60(v-src)/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Sinapses/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/patologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Autoadministração , Síndrome de Abstinência a Substâncias/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia
9.
Eur J Neurosci ; 49(9): 1091-1101, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30565792

RESUMO

Synapse degeneration and dendritic spine dysgenesis are believed to be crucial early steps in Alzheimer's disease (AD), and correlate with cognitive deficits in AD patients. Soluble amyloid beta (Aß)-derived oligomers, also termed Aß-derived diffusible ligands (ADDLs), accumulate in the brain of AD patients and play a crucial role in AD pathogenesis. ADDLs bind to mature hippocampal neurons, induce structural changes in dendritic spines and contribute to neuronal death. However, mechanisms underlying structural and toxic effects are not fully understood. Here, we report that ADDLs bind to cultured mature cortical pyramidal neurons and induce spine dysgenesis. ADDL treatment induced the rapid depletion of kalirin-7, a brain-specific guanine-nucleotide exchange factor for the small GTPase Rac1, from spines. Kalirin-7 is a key regulator of dendritic spine morphogenesis and maintenance in forebrain pyramidal neurons and here we show that overexpression of kalirin-7 prevents ADDL-induced spine degeneration. Taken together, our results suggest that kalirin-7 may play a role in the early events leading to synapse degeneration, and its pharmacological activation may prevent or delay synapse pathology in AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Células Cultivadas , Degeneração Neural , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley
10.
J Neurochem ; 147(1): 84-98, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30071134

RESUMO

The nucleus accumbens (NAc) is a critical brain reward region that mediates the rewarding effects of drugs of abuse, including those of morphine and other opiates. Drugs of abuse induce widespread alterations in gene transcription and dendritic spine morphology in medium spiny neurons (MSNs) of the NAc that ultimately influence NAc excitability and hence reward-related behavioral responses. Growing evidence indicates that within the NAc small GTPases are common intracellular targets of drugs of abuse where these molecules regulate drug-mediated transcriptional and spine morphogenic effects. The RhoA small GTPase is among the most well-characterized members of the Ras superfamily of small GTPases, and recent work highlights an important role for hippocampal RhoA in morphine-facilitated reward behavior. Despite this, it remains unclear how RhoA pathway signaling in the NAc is affected by withdrawal from morphine. To investigate this question, using subcellular fractionation and subsequent protein profiling we examined the expression of key components of the RhoA pathway in NAc nuclear, cytoplasmic, and synaptosomal compartments during multiple withdrawal periods from repeated morphine administration. Furthermore, using in vivo viral-mediated gene transfer, we determined the consequences of revealed RhoA pathway alterations on NAc MSN dendritic spine morphology. Our findings reveal an important role for RhoA signaling cascades in mediating the effects of long-term morphine withdrawal on NAc MSN dendritic spine elimination. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Morfina , Entorpecentes , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Sinapses/metabolismo , Sinapses/patologia , Proteínas rho de Ligação ao GTP/biossíntese , Animais , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Recompensa , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
11.
Neuropsychopharmacology ; 43(9): 1934-1942, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29875450

RESUMO

Elucidating mechanisms by which physical exercise promotes resilience, the brain's ability to cope with prolonged stress exposure while maintaining normal psychological functioning, is a major research challenge given the high prevalence of stress-related mental disorders, including major depressive disorder. Chronic voluntary wheel running (VWR), a rodent model that mimics aspects of human physical exercise, induces the transcription factor ΔFosB in the nucleus accumbens (NAc), a key reward-related brain area. ΔFosB expression in NAc modulates stress susceptibility. Here, we explored whether VWR induction of NAc ΔFosB promotes resilience to chronic social defeat stress (CSDS). Male young-adult C57BL/6J mice were single housed for up to 21 d with or without running wheels and then subjected to 10 d of CSDS. Stress-exposed sedentary mice developed a depressive-like state, characterized by anhedonia and social avoidance, whereas stress-exposed mice that had been wheel running showed resilience. Functional inhibition of NAc ΔFosB during VWR, by viral-mediated overexpression of a transcriptionally inactive JunD mutant, reinstated susceptibility to CSDS. Within the NAc, VWR induction of ΔFosB was CREB-dependent, associated with altered dendritic morphology, and medium spiny neuron (MSN) subtype specific in the NAc core and shell subregions. Finally, when mice performed VWR following the onset of CSDS-induced social avoidance, VWR normalized such behavior. These data indicate that VWR promoted resilience to CSDS, and suggest that sustained induction of ΔFosB in the NAc underlies, at least in part, the stress resilience mediated by VWR. These findings provide a potential framework for the development of treatments for stress-associated mental illnesses based on physical exercise.


Assuntos
Núcleo Accumbens/metabolismo , Resiliência Psicológica , Corrida/fisiologia , Corrida/psicologia , Estresse Psicológico/metabolismo , Anedonia/fisiologia , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Depressão/metabolismo , Depressão/patologia , Dominação-Subordinação , Masculino , Camundongos Endogâmicos C57BL , Núcleo Accumbens/patologia , Comportamento Sedentário , Estresse Psicológico/patologia , Transcrição Gênica , Volição
12.
Nat Commun ; 9(1): 1116, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549264

RESUMO

Most people exposed to stress do not develop depression. Animal models have shown that stress resilience is an active state that requires broad transcriptional adaptations, but how this homeostatic process is regulated remains poorly understood. In this study, we analyze upstream regulators of genes differentially expressed after chronic social defeat stress. We identify estrogen receptor α (ERα) as the top regulator of pro-resilient transcriptional changes in the nucleus accumbens (NAc), a key brain reward region implicated in depression. In accordance with these findings, nuclear ERα protein levels are altered by stress in male and female mice. Further, overexpression of ERα in the NAc promotes stress resilience in both sexes. Subsequent RNA-sequencing reveals that ERα overexpression in NAc reproduces the transcriptional signature of resilience in male, but not female, mice. These results indicate that NAc ERα is an important regulator of pro-resilient transcriptional changes, but with sex-specific downstream targets.


Assuntos
Adaptação Psicológica/fisiologia , Comportamento Animal/fisiologia , Depressão/fisiopatologia , Receptor alfa de Estrogênio/metabolismo , Núcleo Accumbens/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores Sexuais , Transcriptoma/genética
13.
Biol Psychiatry ; 84(3): 167-179, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29397901

RESUMO

BACKGROUND: Lasting changes in gene expression in brain reward regions, including nucleus accumbens (NAc), contribute to persistent functional changes in the addicted brain. We and others have demonstrated that altered expression of several candidate transcription factors in NAc regulates drug responses. A recent large-scale genome-wide study from our group predicted transcription factor E2F3 (E2F3) as a prominent upstream regulator of cocaine-induced changes in gene expression and alternative splicing. METHODS: We studied expression of two E2F3 isoforms-E2F3a and E2F3b-in mouse NAc after repeated cocaine administration and assayed the effects of overexpression or depletion of E2f3 isoforms in NAc on cocaine behavioral responses. We then performed RNA sequencing to investigate the effect of E2f3a overexpression in this region on gene expression and alternative splicing and performed quantitative chromatin immunoprecipitation at downstream targets in NAc following E2f3a overexpression or repeated cocaine exposure. Sample sizes varied between experiments and are noted in the text. RESULTS: We showed that E2f3a, but not E2f3b, overexpression or knockdown in mouse NAc regulates cocaine-induced locomotor and place conditioning behavior. Furthermore, we demonstrated that E2f3a overexpression substantially recapitulates genome-wide transcriptional profiles and alternative splicing induced by cocaine. We further validated direct binding of E2F3a at key target genes following cocaine exposure. CONCLUSIONS: This study establishes E2F3a as a novel transcriptional regulator of cocaine action in NAc. The findings reveal a crucial role for E2F3a in the regulation of cocaine-elicited behavioral states. Moreover, the importance of this role is bolstered by the extensive recapitulation of cocaine's transcriptional effects in NAc by overexpression of E2f3a.


Assuntos
Processamento Alternativo , Cocaína/farmacologia , Fator de Transcrição E2F3/fisiologia , Núcleo Accumbens/fisiologia , Animais , Comportamento Animal , Imunoprecipitação da Cromatina , Fator de Transcrição E2F3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Isoformas de Proteínas/genética
14.
Proc Natl Acad Sci U S A ; 114(6): 1395-1400, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115704

RESUMO

Wiskott-Aldrich syndrome protein (WASP) family verprolin homologous protein 1 (WAVE1) regulates actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. Our previous studies have found WAVE1 to be inhibited by Cdk5-mediated phosphorylation in brain and to play a role in the regulation of dendritic spine morphology. Here we report that mice in which WAVE1 was knocked out (KO) in neurons expressing the D1 dopamine receptor (D1-KO), but not mice where WAVE1 was knocked out in neurons expressing the D2 dopamine receptor (D2-KO), exhibited a significant decrease in place preference associated with cocaine. In contrast to wild-type (WT) and WAVE1 D2-KO mice, cocaine-induced sensitized locomotor behavior was not maintained in WAVE1 D1-KO mice. After chronic cocaine administration and following withdrawal, an acute cocaine challenge induced WAVE1 activation in striatum, which was assessed by dephosphorylation. The cocaine-induced WAVE1 dephosphorylation was attenuated by coadministration of either a D1 dopamine receptor or NMDA glutamate receptor antagonist. Upon an acute challenge of cocaine following chronic cocaine exposure and withdrawal, we also observed in WT, but not in WAVE1 D1-KO mice, a decrease in dendritic spine density and a decrease in the frequency of excitatory postsynaptic AMPA receptor currents in medium spiny projection neurons expressing the D1 dopamine receptor (D1-MSNs) in the nucleus accumbens. These results suggest that WAVE1 is involved selectively in D1-MSNs in cocaine-evoked neuronal activity-mediated feedback regulation of glutamatergic synapses.


Assuntos
Cocaína/farmacologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Comportamento Espacial/efeitos dos fármacos , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Inibidores da Captação de Dopamina/farmacologia , Fenômenos Eletrofisiológicos/genética , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Fosforilação/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
15.
Nat Commun ; 8: 13877, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28072417

RESUMO

Although both males and females become addicted to cocaine, females transition to addiction faster and experience greater difficulties remaining abstinent. We demonstrate an oestrous cycle-dependent mechanism controlling increased cocaine reward in females. During oestrus, ventral tegmental area (VTA) dopamine neuron activity is enhanced and drives post translational modifications at the dopamine transporter (DAT) to increase the ability of cocaine to inhibit its function, an effect mediated by estradiol. Female mice conditioned to associate cocaine with contextual cues during oestrus have enhanced mesolimbic responses to these cues in the absence of drug. Using chemogenetic approaches, we increase VTA activity to mechanistically link oestrous cycle-dependent enhancement of VTA firing to enhanced cocaine affinity at DAT and subsequent reward processing. These data have implications for sexual dimorphism in addiction vulnerability and define a mechanism by which cellular activity results in protein alterations that contribute to dysfunctional learning and reward processing.


Assuntos
Cocaína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Estro/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Cálcio/análise , Cálcio/metabolismo , Condicionamento Psicológico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Eletrofisiologia/métodos , Estro/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Recompensa , Fatores Sexuais , Área Tegmentar Ventral/fisiologia
16.
Proc Natl Acad Sci U S A ; 113(34): 9623-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506785

RESUMO

Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction.


Assuntos
Proteínas de Transporte/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Histonas/metabolismo , Núcleo Accumbens/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Proteínas de Transporte/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/patologia , Histonas/genética , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Núcleo Accumbens/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
17.
Neuron ; 89(3): 566-82, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26844834

RESUMO

Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner.


Assuntos
Cocaína/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Recompensa , Proteínas rap de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Cocaína/administração & dosagem , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
18.
Neuropharmacology ; 101: 351-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26471420

RESUMO

Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors.


Assuntos
Ansiedade/induzido quimicamente , Mefloquina/toxicidade , Núcleo Accumbens/efeitos dos fármacos , Estresse Psicológico/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relações Interpessoais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Técnicas de Patch-Clamp
20.
Nat Med ; 21(10): 1146-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26390241

RESUMO

Improved treatment for major depressive disorder (MDD) remains elusive because of the limited understanding of its underlying biological mechanisms. It is likely that stress-induced maladaptive transcriptional regulation in limbic neural circuits contributes to the development of MDD, possibly through epigenetic factors that regulate chromatin structure. We establish that persistent upregulation of the ACF (ATP-utilizing chromatin assembly and remodeling factor) ATP-dependent chromatin-remodeling complex, occurring in the nucleus accumbens of stress-susceptible mice and depressed humans, is necessary for stress-induced depressive-like behaviors. We found that altered ACF binding after chronic stress was correlated with altered nucleosome positioning, particularly around the transcription start sites of affected genes. These alterations in ACF binding and nucleosome positioning were associated with repressed expression of genes implicated in susceptibility to stress. Together, our findings identify the ACF chromatin-remodeling complex as a critical component in the development of susceptibility to depression and in regulating stress-related behaviors.


Assuntos
Montagem e Desmontagem da Cromatina , Depressão/metabolismo , Estresse Psicológico , Animais , Proteínas Cromossômicas não Histona , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...