Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 9: 626853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095048

RESUMO

With the medical use of cannabis permitted in Canada since 2001, patients seek to use this botanical drug to treat a range of medical conditions. However, many healthcare practitioners express the need for further scientific evidence around the use of medical cannabis. This real-world evidence study aimed to address the paucity of scientific data by surveying newly registered medical cannabis patients, before beginning medical cannabis treatment, and at one follow up 6 weeks after beginning medical cannabis treatment. The goal was to collect data on efficacy, safety and cannabis product type information to capture the potential impact medical cannabis had on patient-reported quality of life (QOL) and several medical conditions over a 6-week period using validated questionnaires. The 214 participants were mainly male (58%) and 57% of the population was older than 50. The most frequently reported medical conditions were recurrent pain, post-traumatic stress disorder (PTSD), anxiety, sleep disorders [including restless leg syndrome (RLS)], and arthritis and other rheumatic disorders. Here we report that over 60% of our medical cannabis cohort self-reported improvements in their medical conditions. With the use of validated surveys, we found significant improvements in recurrent pain, PTSD, and sleep disorders after 6 weeks of medical cannabis treatment. Our findings from patients who reported arthritis and other rheumatic disorders are complex, showing improvements in pain and global activity sub-scores, but not overall changes in validated survey scores. We also report that patients who stated anxiety as their main medical condition did not experience significant changes in their anxiety after 6 weeks of cannabis treatment, though there were QOL improvements. While these results show that patients find cannabis treatment effective for a broad range of medical conditions, cannabis was not a remedy for all the conditions investigated. Thus, there is a need for future clinical research to support the findings we have reported. Additionally, while real-world evidence has not historically been utilized by regulatory bodies, we suggest changes in public policy surrounding cannabis should occur to reflect patient reported efficacy of cannabis from real-world studies due to the uniqueness of medical cannabis's path to legalization.


Assuntos
Cannabis , Maconha Medicinal , Canadá , Humanos , Masculino , Maconha Medicinal/efeitos adversos , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Inquéritos e Questionários
2.
J Neurosci ; 40(30): 5740-5756, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571837

RESUMO

During immature stages, adult-born neurons pass through critical periods for survival and plasticity. It is generally assumed that by 2 months of age adult-born neurons are mature and equivalent to the broader neuronal population, raising questions of how they might contribute to hippocampal function in old age when neurogenesis has declined. However, few have examined adult-born neurons beyond the critical period or directly compared them to neurons born in infancy. Here, we used a retrovirus to visualize functionally relevant morphological features of 2- to 24-week-old adult-born neurons in male rats. From 2 to 7 weeks, neurons grew and attained a relatively mature phenotype. However, several features of 7-week-old neurons suggested a later wave of growth: these neurons had larger nuclei, thicker dendrites, and more dendritic filopodia than all other groups. Indeed, between 7 and 24 weeks, adult-born neurons gained additional dendritic branches, formed a second primary dendrite, acquired more mushroom spines, and had enlarged mossy fiber presynaptic terminals. Compared with neonatal-born neurons, old adult-born neurons had greater spine density, larger presynaptic terminals, and more putative efferent filopodial contacts onto inhibitory neurons. By integrating rates of cell birth and growth across the life span, we estimate that adult neurogenesis ultimately produces half of the cells and the majority of spines in the dentate gyrus. Critically, protracted development contributes to the plasticity of the hippocampus through to the end of life, even after cell production declines. Persistent differences from neonatal-born neurons may additionally endow adult-born neurons with unique functions even after they have matured.SIGNIFICANCE STATEMENT Neurogenesis occurs in the hippocampus throughout adult life and contributes to memory and emotion. It is generally assumed that new neurons have the greatest impact on behavior when they are immature and plastic. However, since neurogenesis declines dramatically with age, it is unclear how they might contribute to behavior later in life when cell proliferation has slowed. Here we find that newborn neurons mature over many months in rats and may end up with distinct morphological features compared with neurons born in infancy. Using a mathematical model, we estimate that a large fraction of neurons is added in adulthood. Moreover, their extended growth produces a reserve of plasticity that persists even after neurogenesis has declined to low rates.


Assuntos
Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Long-Evans
3.
Cannabis Cannabinoid Res ; 4(4): 255-264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31872060

RESUMO

Background: There is variability in the reported Δ9-tetrahydrocannabinol (THC) and 11-hydroxy-tetrahydrocannabinol (11-OH-THC) pharmacokinetic (PK) and pharmacodynamic (PD) parameters between studies and there is limited investigation into how the presence of food or sex affect these parameters. In this study, we examined the PK and PD parameters of an encapsulated THC extract and its major active metabolite, 11-OH-THC, under different fed states. Methods: The study was a single-dose, randomized, double-blinded, four-way crossover investigation. THC capsules (1 or 2×5 mg) were administered to 28 healthy adults (13 females: 15 males) under a fasted condition or after a high-fat meal. Blood samples were collected and PK parameters were determined through noncompartmental analysis. Adverse events (AEs), cognitive function (through completion of digit symbol substitution tests), blood pressure, and heart rate were also recorded. Results: The presence of high-fat food significantly enhanced time to peak plasma concentration (T max) and area under the curve (AUC0-24) for both THC and 11-OH-THC and reduced THC's apparent volume of distribution (V z/F) and apparent clearance (Cl/F). Females had a significantly greater peak plasma concentration (C max) compared with males after 5 mg THC in a fasted state. No cardiovascular or cognitive effects and only mild AEs (somnolence, fatigue, and euphoric mood) were reported. Conclusion: These findings may help to inform the guidelines provided by governing health bodies on the effects of cannabis, such as time to onset and duration of action, and aid health care practitioners in their prescribing practices. Furthermore, the doses used in this study are safe to consider for future interventional studies in disease conditions where THC has been shown to have therapeutic efficacy.

4.
Brain Behav ; 9(10): e01435, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31576673

RESUMO

INTRODUCTION: In the dentate gyrus of the rodent hippocampus, neurogenesis begins prenatally and continues to the end of life. Adult-born neurons often die in the first few weeks after mitosis, but those that survive to 1 month persist indefinitely. In contrast, neurons born at the peak of development are initially stable but can die later in adulthood. Physiological and pathological changes in the hippocampus may therefore result from both the addition of new neurons and the loss of older neurons. The extent of neuronal loss remains unclear since no studies have examined whether neurons born at other stages of development also undergo delayed cell death. METHODS: We used BrdU to label dentate granule cells that were born in male rats on embryonic day 19 (E19; before the developmental peak), postnatal day 6 (P6; peak), and P21 (after the peak). We quantified BrdU+ neurons in separate groups of rats at 2 and 6 months post-BrdU injection to estimate cell death in young adulthood. RESULTS: Consistent with previous work, there was a 15% loss of P6-born neurons between 2 and 6 months of age. In contrast, E19- or P21-born neurons were stable throughout young adulthood. DISCUSSION: Delayed death of P6-born neurons suggests these cells may play a unique role in hippocampal plasticity adulthood, for example, by contributing to the turnover of hippocampal memory. Their loss may also play a role in disorders that are characterized by hippocampal atrophy.


Assuntos
Giro Denteado/fisiologia , Hipocampo , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Antimetabólitos/farmacologia , Bromodesoxiuridina/farmacologia , Morte Celular , Biologia do Desenvolvimento , Crescimento e Desenvolvimento/fisiologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Masculino , Neurônios/metabolismo , Ratos
5.
Behav Brain Res ; 372: 112005, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31167109

RESUMO

During hippocampal-dependent memory formation, sensory signals from the neocortex converge in the dentate gyrus. It is generally believed that the dentate gyrus decorrelates inputs in order to minimize interference between codes for similar experiences, often referred to as pattern separation. The proportion of dentate neurons that are activated by experience is therefore likely to impact how memories are stored and separated. Emerging evidence from mouse models suggests that adult-born neurons can both increase and decrease activity levels in the dentate gyrus. However, the conditions that determine the direction of this modulation, and whether it occurs in other species, remains unclear. Furthermore, since the dentate gyrus is composed of a heterogeneous population of cells that are born throughout life, newborn neurons may not modulate all cells equally. We aimed to investigate whether adult neurogenesis in rats regulates activity in dentate gyrus neurons that are born at the peak of early postnatal development. Adult neurogenesis was increased by subjecting rats to an alternating running and memantine treatment schedule, and it was decreased with a transgenic GFAP-TK rat model. Activity was measured by Fos expression in BrdU+ cells after rats explored a novel environment. Running+memantine treatment increased adult neurogenesis by only 17%, but completely blocked experience-dependent Fos expression. In contrast, GFAP-TK rats had a 68% reduction in adult neurogenesis but normal experience-dependent Fos expression. The inconsistent relationship between neurogenesis and Fos expression suggests that neurogenesis does not regulate DG activity during exploration of a novel environment. Nonetheless, running and memantine may benefit disorders where there is elevated activity in the dentate gyrus, such as anxiety and age-related memory impairments.


Assuntos
Memantina/farmacologia , Neurogênese/fisiologia , Corrida/fisiologia , Animais , Encéfalo/fisiologia , Giro Denteado/fisiologia , Hipocampo/fisiologia , Masculino , Memantina/metabolismo , Memória/fisiologia , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Condicionamento Físico Animal/fisiologia , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans
6.
Neuroscience ; 390: 241-255, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30176321

RESUMO

Adult neurogenesis has potential to ameliorate a number of disorders that negatively impact the hippocampus, including age-related cognitive decline, depression, and schizophrenia. A number of treatments enhance adult neurogenesis including exercise, NMDA receptor antagonism, antidepressant drugs and environmental enrichment. Despite the chronic nature of many disorders, most animal studies have only examined the efficacy of neurogenic treatments over short timescales (≤1 month). Also, studies of neurogenesis typically include only 1 sex, even though many disorders differentially impact males and females. We tested whether two known neurogenic treatments, running and the NMDA receptor antagonist, memantine, could cause sustained increases in neurogenesis in male and female rats. We found that continuous access to a running wheel (cRUN) initially increased neurogenesis, but effects were minimal after 1 month and completely absent after 5 months. Similarly, a single injection of memantine (sMEM) transiently increased neurogenesis before returning to baseline at 1 month. To determine whether neurogenesis could be increased over a 2-month timeframe, we next subjected rats to interval running (iRUN), multiple memantine injections (mMEM), or alternating blocks of iRUN and mMEM. Two months of iRUN increased DCX+ cells in females and iRUN followed by mMEM increased DCX+ cells in males, indicating that neurogenesis was increased in the later stages of the treatments. However, thymidine analogs revealed that neurogenesis was minimally increased during the initial stages of the treatments. These findings highlight temporal limitations and sex differences in the efficacy of neurogenic manipulations, which may be relevant for designing plasticity-promoting treatments.


Assuntos
Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Hipocampo/fisiologia , Memantina/administração & dosagem , Neurogênese , Condicionamento Físico Animal , Caracteres Sexuais , Animais , Proteína Duplacortina , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Neurogênese/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
7.
Hippocampus ; 27(11): 1155-1167, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28686814

RESUMO

The storage and persistence of memories depends on plasticity in the hippocampus. Adult neurogenesis produces new neurons that mature through critical periods for plasticity and cellular survival, which determine their contributions to learning and memory. However, most granule neurons are generated prior to adulthood; the maturational timecourse of these neurons is poorly understood compared to adult-born neurons but is essential to identify how the dentate gyrus (DG), as a whole, contributes to behavior. To characterize neurons born in the early postnatal period, we labeled DG neurons born on postnatal day 6 (P6) with BrdU and quantified maturation and survival across early (1 hr to 8 weeks old) and late (2-6 months old) cell ages. We find that the dynamics of developmentally-born neuron survival is essentially the opposite of neurons born in adulthood: P6-born neurons did not go through a period of cell death during their immature stages (from 1 to 8 weeks). In contrast, 17% of P6-born neurons died after reaching maturity, between 2 and 6 months of age. Delayed death was evident from the loss of BrdU+ cells as well as pyknotic BrdU+ caspase3+ neurons within the superficial granule cell layer. Patterns of DCX, NeuN, and activity-dependent Fos expression indicate that developmentally-born neurons mature over several weeks and a sharp peak in zif268 expression at 2 weeks suggests that developmentally-born neurons mature faster than adult-born neurons (which peak at 3 weeks). Collectively, our findings are relevant for understanding how developmentally-born DG neurons contribute to memory and disorders throughout the lifespan. High levels of early survival and zif268 expression may promote learning, while also rendering neurons sensitive to insults at defined stages. Late neuronal death in young adulthood may result in the loss of hundreds of thousands of DG neurons, which could impact memory persistence and contribute to hippocampal/DG atrophy in disorders such as depression.


Assuntos
Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Antígenos Nucleares/metabolismo , Bromodesoxiuridina , Caspase 3/metabolismo , Giro Denteado/citologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neuropeptídeos/metabolismo , Ratos Long-Evans
8.
Hippocampus ; 27(8): 871-882, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28474795

RESUMO

Different memory systems offer distinct advantages to navigational behavior. The hippocampus forms complex associations between environmental stimuli, enabling flexible navigation through space. In contrast, the dorsal striatum associates discrete cues and favorable behavioral responses, enabling habit-like, automated navigation. While these two systems often complement one another, there are instances where striatal-dependent responses (e.g. approach a cue) conflict with hippocampal representations of spatial goals. In conflict situations, preference for spatial vs. response strategies varies across individuals and depends on previous experience, plasticity and the integrity of these two memory systems. Here, we investigated the role of adult hippocampal neurogenesis and exercise on mouse search strategies in a water maze task that can be solved with either a hippocampal-dependent place strategy or a striatal-dependent cue-response strategy. We predicted that inhibiting adult neurogenesis would impair hippocampal function and shift behavior towards striatal-dependent cue responses. However, blocking neurogenesis in a transgenic nestin-TK mouse did not affect strategy choice. We then investigated whether a pro-neurogenic stimulus, running, would bias mice towards hippocampal-dependent spatial strategies. While running indeed promoted spatial strategies, it did so even when neurogenesis was inhibited in nestin-TK mice. These findings indicate that exercise-induced increases in neurogenesis are not always required for enhanced cognitive function. Furthermore, our data identify exercise as a potentially useful strategy for promoting flexible, cognitive forms of memory in habit-related disorders that are characterized by excessive responding to discrete cues.


Assuntos
Hipocampo/fisiologia , Neurogênese/fisiologia , Condicionamento Físico Animal/fisiologia , Comportamento Espacial/fisiologia , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Sinais (Psicologia) , Proteínas do Domínio Duplacortina , Hipocampo/citologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/genética , Nestina/metabolismo , Neuropeptídeos/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Fatores de Tempo
9.
Anim Cogn ; 18(1): 195-203, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25060577

RESUMO

Behavioral work has demonstrated that rats solve many spatial problems using a conditional strategy based on orientation at the start point. The present study assessed whether mice use a similar strategy and whether the strategy would be affected by the poorer directional sensitivity of mice. In Experiment 1, mice were trained on a response, a direction or one of two place problems to locate a hidden platform in a water T-maze located in two positions. In the response task, mice made a right (or left) turn from two different start points located 180° apart. In the direction task, the maze was shifted (to the left or right) and the start points rotated by 180° across trials, but the platform was in a constant direction relative to room cues. In the translation place task, the mice were trained to locate the platform in a fixed location relative to extra-maze cues when the maze was shifted across trials, but the orientation of the start arm did not change. In the rotation place task, the mice were trained to locate the platform in a fixed location when the maze was shifted and the start points rotated by 90° across trials. As previously reported with rats, mice had difficulty solving the translation place problem compared with the other three problems. Unlike rats, mice learned the direction problem in significantly fewer trials than the rotation problem. This difference between acquisition of the direction and rotation problems was replicated in Experiment 2. The difficulty mice have in discriminating start point orientations that are 90° apart as opposed to 180° apart can be attributed to the broader firing ranges of HD cells in mice compared with rats.


Assuntos
Aprendizagem em Labirinto , Orientação , Resolução de Problemas , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Navegação Espacial
10.
Behav Brain Res ; 264: 105-15, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24525421

RESUMO

Ghrelin, a hormone implicated in the regulation of feeding and energy balance, has also been associated with neural function underlying learning and memory. These effects are thought to be mediated by ghrelin targeting receptors at extra hypothalamic sites such as the hippocampus. Exogenous ghrelin administration increases dendritic spine density in the hippocampal CA1 region and neurogenesis in the dentate gyrus (DG), while improving memory in rats. In the present study, we sought to determine whether rats lacking the ghrelin receptor would show early neural or cognitive decline measured via hippocampal integrity (spine density and neurogenesis) and spatial learning and memory. As such, we used young and middle-aged adult rats with mutations to the gene encoding for the ghrelin receptor (GHS-R KO) and wildtype (WT) littermates to determine differences in performance on hippocampal-dependent tasks (the water maze and radial arm maze). In addition, we examined the hippocampal dentate gyrus of these rats for differences in dendritic spine density and cell proliferation (doublecortin). Overall, results demonstrated that spine density and doublecortin staining in the dentate gyrus of the young GHS-R KO group was similar to that seen in middle-aged groups (both KO and WT) and lower than the young WT group. Middle-aged GHS-R KO and WT groups showed deficits on the radial arm maze food-motivated task but not the water maze task. These data suggest that impaired ghrelin signaling leads to an early onset decrement in hippocampal structural integrity that may manifest in non- spatial-related behavioral deficits.


Assuntos
Transtornos Cognitivos/genética , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Neurônios/patologia , Receptores de Grelina/deficiência , Percepção Espacial/fisiologia , Fatores Etários , Animais , Peso Corporal/genética , Transtornos Cognitivos/sangue , Transtornos Cognitivos/patologia , Espinhas Dendríticas/patologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Comportamento Exploratório , Grelina/sangue , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Neuropeptídeos/metabolismo , Ratos , Ratos Transgênicos , Receptores de Grelina/genética , Coloração pela Prata , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...