Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spine J ; 20(9): 1492-1502, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32413487

RESUMO

BACKGROUND CONTEXT: Abnormal Wnt signaling in intervertebral discs (IVDs) progresses degenerative disc disease (DDD) pathogenesis by impairing nucleus pulposus cell function, decreasing matrix deposition, and accelerating fibrosis. PURPOSE: This study was conducted to evaluate the effects of lorecivivint (LOR; SM04690), a small-molecule Wnt pathway inhibitor, on IVD cells and in an animal model of DDD. STUDY DESIGN: We used in vitro assays and a rat model of DDD to test the effects of LOR on nucleus pulposus cell senescence and viability, annulus fibrosus (AF) cell fibrosis, and cartilage regeneration and protection. METHODS: Wnt pathway gene expression was measured in human NP and AF cell cultures treated with LOR or DMSO (vehicle). Chondrocyte-like differentiation of rat and human NP cells, NP cell senescence and protection, and AF cell fibrosis were assessed using gene expression and immunocytochemistry. Disc and plasma pharmacokinetics were analyzed following intradiscal LOR injection in rats. In vivo effects of LOR and vehicle on AF integrity, AF/NP junction, NP cellularity and matrix, and disc height were compared using histopathology and radiography in a rat coccygeal IVD needle-puncture model of DDD. RESULTS: In NP and AF cell cultures, LOR-inhibited Wnt pathway gene expression compared with vehicle. In NP cells, LOR inhibited senescence, decreased catabolism, and induced differentiation into chondrocyte-like cells; in AF cells, LOR decreased catabolism and inhibited fibrosis. A single intradiscal LOR injection in rats resulted in therapeutic disc concentrations (~30 nM) for >180 days and minimal systemic exposure. DDD-model rats receiving LOR qualitatively demonstrated increased cartilage matrix and reduced AF lamellar disorganization and fragmentation with significantly (p<.05) improved histology scores and increased disc height compared with vehicle. CONCLUSIONS: LOR showed beneficial effects on IVD cells in vitro and reduced disease progression in a rat model of DDD compared with vehicle, suggesting that LOR may have disease-modifying therapeutic potential. CLINICAL SIGNIFICANCE: The current therapeutic options for DDD are pain management and surgical intervention; there are no approved therapies that alter the progression of DDD. Our data support advancing LOR into clinical development as an injectable, small-molecule, potential disease-modifying treatment for DDD in humans.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Imidazóis , Indazóis , Degeneração do Disco Intervertebral/tratamento farmacológico , Piridinas , Ratos , Via de Sinalização Wnt
2.
Cancer Lett ; 473: 186-197, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31560935

RESUMO

The Wnt/ß-catenin signaling pathway is aberrantly activated in colorectal (CRC) and many other cancers, and novel strategies for effectively targeting it may be needed due to its complexity. In this report, SM08502, a novel small molecule in clinical development for the treatment of solid tumors, was shown to reduce Wnt pathway signaling and gene expression through potent inhibition of CDC-like kinase (CLK) activity. SM08502 inhibited serine and arginine rich splicing factor (SRSF) phosphorylation and disrupted spliceosome activity, which was associated with inhibition of Wnt pathway-related gene and protein expression. Additionally, SM08502 induced the generation of splicing variants of Wnt pathway genes, suggesting that its mechanism for inhibition of gene expression includes effects on alternative splicing. Orally administered SM08502 significantly inhibited growth of gastrointestinal tumors and decreased SRSF phosphorylation and Wnt pathway gene expression in xenograft mouse models. These data implicate CLKs in the regulation of Wnt signaling and represent a novel strategy for inhibiting Wnt pathway gene expression in cancers. SM08502 is a first-in-class CLK inhibitor being investigated in a Phase 1 clinical trial for subjects with advanced solid tumors (NCT03355066).


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Processamento Alternativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Concentração Inibidora 50 , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ratos , Neoplasias Gástricas/patologia , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...