Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107215, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394920

RESUMO

Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated protein kinase involved in neurogenesis and human cancer. Recent studies have revealed a novel functional role for DCLK1 in inflammatory signaling, thus positioning it as a novel target kinase for respiratory inflammatory disease treatment. In this study, we designed and synthesized a series of NVP-TAE684-based derivatives as novel anti-inflammatory agents targeting DCLK1. Bio-layer interferometry binding screening and kinase assays of the NVP-TAE684 derivatives led to the discovery of an effective DCLK1 inhibitor (a24), with an IC50 of 179.7 nM. Compound a24 effectively inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages with higher potency than the lead compound. Mechanistically, compound a24 inhibited LPS-induced inflammation by inhibiting DCLK1-mediated IKKß phosphorylation. Furthermore, compound a24 showed in vivo anti-inflammatory activity in an LPS-challenged acute lung injury model. These findings suggest that compound a24 may serve as a novel candidate for the development of DCLK1 inhibitors and a potential therapeutic agent for the treatment of inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Quinases Semelhantes a Duplacortina , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico
2.
Eur J Med Chem ; 252: 115289, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963290

RESUMO

Acute lung injury (ALI) is an inflammation-mediated respiratory disease that is associated with a high mortality rate. In this study, a series of novel O-benzylcinnamic acid derivatives were designed and synthesized using cinnamic acid as the lead compound. We tested the preliminary anti-inflammatory activity of the compounds by evaluating their effect on inhibiting the activity of alkaline phosphatase (ALP) in Hek-Blue-TLR4 cells, in which compound L26 showed the best activity and 7-fold more active than CIN. ELISA, immunoprecipitation, and molecular docking indicated that L26 targeted MD-2 protein and competed with LPS to bind to MD-2, which resulted in the inhibition of inflammation. In the LPS-induced mouse model of ALI, L26 was found to decrease ALP activity and inflammatory cytokine TNF-α release to reduce lung injury by inhibiting the NF-κB signaling pathway. Acute toxicity experiments showed that high doses of L26 did not cause adverse reactions in mice, and it was safe in vivo. Also, the preliminary pharmacokinetic parameters of L26 were investigated in SD rats (T1/2 = 4.246 h). In summary, L26 exhibited optimal pharmacodynamic and pharmacokinetic characteristics, which suggested that L26 could serve as a potential agent for the development of ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Pulmão/metabolismo
3.
Front Pharmacol ; 14: 1098463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843936

RESUMO

Liver fibrosis is characterised by the activation of hepatic stellate cells (HSCs) and matrix deposition. Accumulating evidence has revealed that the oncogenic protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) acts as a therapeutic target of fibrosis. Although several SHP2 inhibitors have reached early clinical trials, there are currently no FDA-approved drugs that target SHP2. In this study, we aimed to identify novel SHP2 inhibitors from an in-house natural product library to treat liver fibrosis. Out of the screened 800 compounds, a furanogermacrane sesquiterpene, linderalactone (LIN), significantly inhibited SHP2 dephosphorylation activity in vitro. Cross-validated enzymatic assays, bio-layer interferometry (BLI) assays, and site-directed mutagenesis were used to confirm that LIN directly binds to the catalytic PTP domain of SHP2. In vivo administration of LIN significantly ameliorated carbon tetrachloride (CCl4)-induced HSC activation and liver fibrosis by inhibiting the TGFß/Smad3 pathway. Thus, LIN or its derivatives could be considered potential therapeutic agents against SHP2-related diseases, such as liver fibrosis or NASH.

4.
Bioorg Med Chem Lett ; 80: 129097, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462751

RESUMO

Acute lung injury (ALI) is a devastating disease with a high mortality rate of 30%-40%. There is an unmet clinical need owing to limited treatment strategies and little clinical benefit. The pathology of ALI indicates that reducing the inflammatory response could be a highly desirable strategy to treat ALI. In this study, we designed and synthesized 36 novel 1-(4-(benzylsulfonyl)-2-nitrophenyl) derivatives and evaluated their anti-inflammatory activities by measuring the release of cytokines in lipopolysaccharide (LPS)-challenged J774A.1 cells. Compounds 19, 20, and 39 potently reduced the release of IL-6 and TNF-α in J774A.1 cells. Additionally, 39 improved LPS-induced ALI in vivo and inhibited cytokine production in lung tissues. Furthermore, 39 reduced inflammatory infiltration and downregulated p-p65 levels in lung tissues. Thus, compound 39 could serve as a new lead structure for the development of anti-inflammatory drugs to treat ALI.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Pulmão , Anti-Inflamatórios/efeitos adversos , Citocinas
5.
J Exp Clin Cancer Res ; 40(1): 345, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732230

RESUMO

Fibroblast growth factors (FGFs) and their receptors (FGFRs) play critical roles in many biological processes and developmental functions. Chromosomal translocation of FGFRs result in the formation of chimeric FGFR fusion proteins, which often cause aberrant signaling leading to the development and progression of human cancer. Due to the high recurrence rate and carcinogenicity, oncogenic FGFR gene fusions have been identified as promising therapeutic targets. Erdafitinib and pemigatinib, two FGFR selective inhibitors targeting FGFR fusions, have been approved by the U.S. Food and Drug Administration (FDA) to treat patients with urothelial cancer and cholangiocarcinoma, respectively. Futibatinib, a third-generation FGFR inhibitor, is under phase III clinical trials in patients with FGFR gene rearrangements. Herein, we review the current understanding of the FGF/FGFRs system and the oncogenic effect of FGFR fusions, summarize promising inhibitors under clinical development for patients with FGFR fusions, and highlight the challenges in this field.


Assuntos
Neoplasias/tratamento farmacológico , Proteínas de Fusão Oncogênica/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...