Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1816: 148480, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429454

RESUMO

Major depressive disorder (MDD) is a devastating psychiatric disease, and current therapies could not well meet the demand for MDD treatment. Exercise benefits mental illness, and notably, exercise has been recommended as an alternative option for MDD treatment in some countries. However, the paradigm and intensity of exercise for MDD treatment has yet to be determined. High-intensity interval training (HIIT) is a potent and time-efficient type of exercise training and has gained popularity in recent years. In this study, we exposed the mice to chronic unpredictable mild stress (CUMS) and found HIIT exerted substantial antidepressant effect. Moreover, HIIT further enhanced the antidepressant effect of fluoxetine, a classic antidepressant in the clinic, confirming the antidepressant role of HIIT. HIIT significantly reversed the CUMS-induced upregulations in HDAC2 mRNA and protein level in the ventral hippocampus. We also found HIIT rescued the CUMS-induced downregulation in the expression of brain-derived neurotrophic factor (BDNF) and HDAC2 overexpression counteracted the HIIT-induced increase in BDNF level. More importantly, both virus-mediated HDAC2 overexpression and microinfusion of TrkB-Fc, a BDNF scavenger, in the ventral hippocampus abolished the antidepressant effect of HIIT. Together, our results strongly demonstrate that HIIT attenuates depressive behaviors, probably via HDAC2-BDNF signaling pathway and reveal that HIIT may serve as an alternative option for MDD treatment.


Assuntos
Transtorno Depressivo Maior , Treinamento Intervalado de Alta Intensidade , Animais , Camundongos , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/terapia , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Transdução de Sinais , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo , Histona Desacetilase 2/metabolismo
2.
J Affect Disord ; 333: 181-192, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080493

RESUMO

BACKGROUND: The basolateral amygdala (BLA) neurons are primarily glutamatergic and have been associated with emotion regulation. However, little is known about the roles of BLA neurons expressing neuronal nitric oxide synthase (nNOS, Nos1) in the regulation of emotional behaviors. METHODS: Using Nos1-cre mice and chemogenetic and optogenetic manipulations, we specifically silenced or activated Nos1+ or Nos1- neurons in the BLA, or silenced their projections to the anterdorsal bed nucleus of the stria terminalis (adBNST) and ventral hippocampus (vHPC). We measured anxiety behaviors in elevated plus maze (EPM) and open-field test (OFT), and measured depression behaviors in forced swimming test (FST) and tail suspension test (TST). RESULTS: BLA Nos1+ neurons were predominantly glutamatergic, and glutamatergic but not GABAergic Nos1+ neurons were involved in controlling anxiety- and depression-related behaviors. Interestingly, by selectively manipulating the activities of BLA Nos1+ and Nos1- excitatory neurons, we found that they had opposing effects on anxiety- and depression-related behaviors. BLA Nos1+ excitatory neurons projected to the adBNST, this BLA-adBNST circuit controlled the expression of anxiety- and depression-related behaviors, while BLA Nos1- excitatory neurons projected to vHPC, this BLA-vHPC circuit contributed to the expression of anxiety- and depression-related behaviors. Moreover, excitatory vHPC-adBNST circuit antagonized the role of BLA-adBNST circuit in regulating anxiety- and depression-related behaviors. CONCLUSIONS: BLA Nos1+ and Nos1- excitatory neuron subpopulations exert different effects on anxiety- and depression-related behaviors through distinct projection circuits, providing a new insight of BLA excitatory neurons in emotional regulation. LIMITATIONS: We did not perform retrograde labeling from adBNST and vHPC regions.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Depressão , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Ansiedade , Neurônios/metabolismo
3.
Sheng Li Xue Bao ; 74(2): 165-176, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35503064

RESUMO

This paper was aimed to clarify the effect of high-intensity interval training (HIIT) on depression. Animal running platforms were used to establish HIIT exercise models, depression models were prepared by chronic unpredictable mild stress (CUMS), and depression-related behaviors were detected by behavioral experiments. The results showed that HIIT exercise improved depression-related behavior in CUMS model mice. Western blot and ELISA results showed that in the hippocampus, medial prefrontal cortex (mPFC) and amygdala of the CUMS model mice, glucocorticoid receptor (GR) protein expression was down-regulated, and the content of tumor necrosis factor α (TNF-α) was increased, compared with those in the control group, whereas HIIT exercise could effectively reverse these changes in CUMS model mice. These results suggest that HIIT exercise can exert antidepressant effect, which brings new ideas and means for the clinical treatment of depressive diseases.


Assuntos
Depressão , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Comportamento Animal , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Estresse Psicológico/tratamento farmacológico
4.
Biochem Biophys Res Commun ; 593: 57-64, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35063770

RESUMO

Some of the statins have been shown to have antidepressant effects, but whether atorvastatin (AV) has antidepressant effects is unknown. This study was to investigate the effect of AV treatment on depressive behaviors. Herein, we show that AV treatment had antidepressant-like effect in physiological conditions and antidepressant effect in depressive state which depended on α7 nicotinic acetylcholine receptor (α7nAChR) expression in the ventral hippocampus (vHPC), but not α4ß2 nicotinic acetylcholine receptor (α4ß2nAchR) expression in vHPC, nor the α7nAChR and α4ß2nAchR expression in dorsal hippocampus (dHPC). By using MLA, a selective α7nAChR antagonist, we investigated the role of α7nAChR in AV treatment. Behavior tests demonstrated that MLA abolished the antidepressant effect of AV. Besides, our data showed that AV treatment increased Akt phosphorylation, brain-derived neurotrophic factor (BDNF), synaptic related protein synapsin and spinophilin expression. The phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 reversed AV-induced increase of BDNF expression, newborn neurons and antidepressant behavior effects. Our study suggests that AV plays an antidepressant role by regulating synaptic plasticity of vHPC through PI3K/Akt-BDNF signaling pathway, which may be a good choice for depression treatment.


Assuntos
Antidepressivos/farmacologia , Atorvastatina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Transtorno Depressivo/etiologia , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
5.
Mol Psychiatry ; 26(11): 6506-6519, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931732

RESUMO

Exposure therapy based on the extinction of fear memory is first-line treatment for post-traumatic stress disorder (PTSD). However, fear extinction is relatively easy to learn but difficult to remember, extinguished fear often relapses under a number of circumstances. Here, we report that extinction learning-induced association of neuronal nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the infralimbic (IL) subregion of medial prefrontal cortex negatively regulates extinction memory and dissociating nNOS-CAPON can prevent the return of extinguished fear in mice. Extinction training significantly increases nNOS-CAPON association in the IL. Disruptors of nNOS-CAPON increase extracellular signal-regulated kinase (ERK) phosphorylation and facilitate the retention of extinction memory in an ERK2-dependent manner. More importantly, dissociating nNOS-CAPON after extinction training enhances long-term potentiation and excitatory synaptic transmission, increases spine density in the IL, and prevents spontaneous recovery, renewal and reinstatement of remote fear of mice. Moreover, nNOS-CAPON disruptors do not affect other types of learning. Thus, nNOS-CAPON can serve as a new target for treating PTSD.


Assuntos
Extinção Psicológica , Medo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ligantes , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismo
6.
Neurosci Bull ; 37(2): 229-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33180308

RESUMO

The paraventricular nucleus of the thalamus (PVT), which serves as a hub, receives dense projections from the medial prefrontal cortex (mPFC) and projects to the lateral division of central amygdala (CeL). The infralimbic (IL) cortex plays a crucial role in encoding and recalling fear extinction memory. Here, we found that neurons in the PVT and IL were strongly activated during fear extinction retrieval. Silencing PVT neurons inhibited extinction retrieval at recent time point (24 h after extinction), while activating them promoted extinction retrieval at remote time point (7 d after extinction), suggesting a critical role of the PVT in extinction retrieval. In the mPFC-PVT circuit, projections from IL rather than prelimbic cortex to the PVT were dominant, and disrupting the IL-PVT projection suppressed extinction retrieval. Moreover, the axons of PVT neurons preferentially projected to the CeL. Silencing the PVT-CeL circuit also suppressed extinction retrieval. Together, our findings reveal a new neural circuit for fear extinction retrieval outside the classical IL-amygdala circuit.


Assuntos
Núcleo Central da Amígdala , Medo , Extinção Psicológica , Córtex Pré-Frontal , Tálamo
7.
Cereb Cortex ; 31(3): 1707-1718, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188393

RESUMO

Posttraumatic stress disorder subjects usually show impaired recall of extinction memory, leading to extinguished fear relapses. However, little is known about the neural mechanisms underlying the impaired recall of extinction memory. We show here that the activity of dorsal hippocampus (dHPC) to infralimbic (IL) cortex circuit is essential for the recall of fear extinction memory in male mice. There were functional neural projections from the dHPC to IL. Using optogenetic manipulations, we observed that silencing the activity of dHPC-IL circuit inhibited recall of extinction memory while stimulating the activity of dHPC-IL circuit facilitated recall of extinction memory. "Impairment of extinction consolidation caused by" conditional deletion of extracellular signal-regulated kinase 2 (ERK2) in the IL prevented the dHPC-IL circuit-mediated recall of extinction memory. Moreover, silencing the dHPC-IL circuit abolished the effect of intra-IL microinjection of ERK enhancer on the recall of extinction memory. Together, we identify a dHPC to IL circuit that mediates the recall of extinction memory, and our data suggest that the dysfunction of dHPC-IL circuit and/or impaired extinction consolidation may contribute to extinguished fear relapses.


Assuntos
Extinção Psicológica/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico , Masculino , Camundongos Endogâmicos C57BL , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
8.
Biochem Biophys Res Commun ; 525(2): 520-527, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32113678

RESUMO

Extremely high relapse rate is the dramatic challenge of drug abuse at present. Environmental cues play an important role in relapse of drug abuse. However, the specific mechanism underlying relapse remains unclear. Using morphine conditioned place preference (CPP) model, we show that association of neuronal nitric oxide synthase (nNOS) with postsynaptic density-95 (PSD-95) plays a significant role in morphine priming-induced reinstatement. The nNOS-PSD-95 coupling and c-Fos expression in the medial prefrontal cortex (mPFC) was significantly increased after extinction of morphine CPP. Dissociation of nNOS-PSD-95 in the mPFC by ZL006 inhibited the reinstatement of morphine CPP induced by a priming dose of morphine. Significantly reduced phosphorylation of cAMP-response element binding protein (CREB) in the mPFC was observed in the mice exposed to morphine after the extinction training. Uncoupling nNOS-PSD-95 reversed the morphine-induced CREB dysfunction. Moreover, effects of ZL006 on the reinstatement of morphine CPP and CREB activation depended on nNOS-PSD-95 target. Together, our findings suggest that nNOS-PSD-95 in the mPFC contributes to reinstatement of morphine CPP, possibly through CREB dysfunction, offering a potential target to prevent relapse of drug abuse.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Morfina/farmacologia , Entorpecentes/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Extinção Psicológica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos
9.
J Neurosci ; 39(29): 5728-5739, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097621

RESUMO

Contextual fear memory becomes less context-specific over time, a phenomenon referred to as contextual fear generalization. Overgeneralization of contextual fear memory is a core symptom of post-traumatic stress disorder (PTSD), but circuit mechanisms underlying the generalization remain unclear. We show here that neural projections from the anterior cingulate cortex (ACC) to ventral hippocampus (vHPC) mediate contextual fear generalization in male mice. Retrieval of contextual fear in a novel context at a remote time point activated cells in the ACC and vHPC, as indicated by significantly increased C-fos+ cells. Using chemogenetic or photogenetic manipulations, we observed that silencing the activity of ACC or vHPC neurons reduced contextual fear generalization at the remote time point, whereas stimulating the activity of ACC or vHPC neurons facilitated contextual fear generalization at a recent time point. We found that ACC neurons projected to the vHPC unidirectionally, and importantly, silencing the activity of projection fibers from the ACC to vHPC inhibited contextual fear generalization at the remote time point. Together, our findings reveal an ACC to vHPC circuit that controls expression of fear generalization and may offer new strategies to prevent or reverse contextual fear generalization in subjects with anxiety disorders, especially in PTSD.SIGNIFICANCE STATEMENT Overgeneralization of contextual fear memory is a cardinal feature of PTSD, but circuit mechanisms underlying it remain unclear. Our study indicates that neural projections from the anterior cingulate cortex to ventral hippocampus control the expression of contextual fear generalization. Thus, manipulating the circuit may prevent or reverse fear overgeneralization in subjects with PTSD.


Assuntos
Condicionamento Psicológico/fisiologia , Medo/fisiologia , Medo/psicologia , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Animais , Giro do Cíngulo/química , Hipocampo/química , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/química
10.
Biochem Biophys Res Commun ; 513(1): 248-254, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30954227

RESUMO

A typical feature of the contextual fear memory is increased fear generalization with time. Though much attention has been given to the neural structures that underlie the long-term consolidation of a contextual fear memory, the molecular mechanisms regulating fear generalization remain unclear. We observed that retrieval of contextual fear in a novel context at a remote time point increased coupling of neuronal nitric oxide synthase (nNOS) with postsynaptic density-95 (PSD-95) and c-Fos expression in the anterior cingulate cortex (ACC). Disrupting nNOS-PSD-95 coupling in the ACC decreased the expression of Histone deacetylase 2 (HDAC2), and inhibited contextual fear generalization at a remote time point. Together, our findings reveal nNOS-PSD-95 interaction in the ACC could be a promising target to prevent or reverse contextual fear generalization.


Assuntos
Medo , Guanilato Quinases/metabolismo , Giro do Cíngulo/fisiologia , Proteínas de Membrana/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Medo/fisiologia , Medo/psicologia , Generalização Psicológica , Masculino , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
11.
Behav Brain Res ; 357-358: 88-97, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246772

RESUMO

Our previous study found that serotonin 1A receptor (5-HT1aR) is an endogenous suppressor of nNOS expression in the hippocampus, which accounts for anxiolytic effect of fluoxetine. However, the precise molecular mechanism remains unknown. By using 8-OH-DPAT, a selective 5-HT1aR agonist, NAN-190, a selective 5-HT1aR antagonist, and U0126, an Extracellular Regulated Protein Kinases (ERK) phosphorylation inhibitor, we investigated the role of ERK in 5-HT1aR-nNOS pathway. Western blots analysis demonstrated that 5-HT1aR activation up-regulated the level of phosphorylated ERK (P-ERK) beginning at 5 min and down-regulated the expression of nNOS beginning at 20 min. Meanwhile, blockage of 5-HT1aR resulted in a decrease in P-ERK beginning at 20 min and caused an increase in nNOS expression beginning at 6 h. Although U0126 itself did not alter nNOS expression and activity, NO level, and anxiety-related behaviors, the treatment totally reversed 8-OH-DPAT-induced reduction in nNOS expression and function, and anxiolytic effect. Besides, our data showed that ERK phosphorylation was essential for 5-HT1aR activation-induced cAMP responsive element binding protein (CREB) phosphorylation, hippocampal neurogenesis and synaptogenesis of newborn neuron. Our study suggests a crucial role of ERK phosphorylation in the regulation of nNOS expression by 5-HT1aR, which is helpful for understanding the mechanism of 5-HT1aR-based anxiolytic treatment.


Assuntos
Ansiedade/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Serotoninérgicos/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sacarose/administração & dosagem
12.
Sci Rep ; 8(1): 12775, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143658

RESUMO

Fear extinction depends on N-methyl-D-aspartate glutamate receptors (NMDARs) and brain-derived neurotrophic factor (BDNF) activation in the limbic system. However, postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) coupling, the downstream signaling of NMDARs activation, obstructs the BDNF signaling transduction. Thus, we wondered distinct roles of NMDAR activation and PSD-95-nNOS coupling on fear extinction. To explore the mechanisms, we detected protein-protein interaction using coimmunoprecipitation and measured protein expression by western blot. Contextual fear extinction induced a shift from PSD-95-nNOS to PSD-95-TrkB association in the dorsal hippocampus and c-Fos expression in the dorsal CA3. Disrupting PSD-95-nNOS coupling in the dorsal CA3 up-regulated phosphorylation of extracellular signal-regulates kinase (ERK) and BDNF, enhanced the association of BDNF-TrkB signaling with PSD-95, and promoted contextual fear extinction. Conversely, blocking NMDARs in the dorsal CA3 down-regulated BDNF expression and hindered contextual fear extinction. NMDARs activation and PSD-95-nNOS coupling play different roles in modulating contextual fear extinction in the hippocampus. Because inhibitors of PSD-95-nNOS interaction produce antidepressant and anxiolytic effect without NMDAR-induced side effects, PSD-95-nNOS could be a valuable target for PTSD treatment.


Assuntos
Região CA3 Hipocampal/fisiologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Receptor trkB/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
13.
Biochem Biophys Res Commun ; 495(2): 1588-1593, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29223397

RESUMO

Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABAA receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders.


Assuntos
Ansiedade/tratamento farmacológico , Canfanos/farmacologia , Medo/efeitos dos fármacos , Animais , Ansiedade/fisiopatologia , Ansiedade/psicologia , Condicionamento Psicológico/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medo/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Hipocampo/anatomia & histologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plantas Medicinais , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
14.
Biochem Biophys Res Commun ; 493(1): 862-868, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28888982

RESUMO

Granule cells in the dentate gyrus regenerate constantly in adult hippocampus and then integrate into neural circuits in the hippocampus thereby providing the neural basis for learning and memory. Promoting the neurogenesis in the hippocampus facilitates learning and memory such as spatial learning, object identification, and extinction learning. The interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) is reported to negatively regulate neurogenesis in brain, so we hypothesized that disrupting this interaction might facilitate the neurogenesis in the dentate gyrus (DG) and thus enhance the extinction memory retrieval of fear learning. We found that uncoupling the nNOS-PSD-95 complex in remote contextual fear condition promoted both neuronal proliferation and survival in the DG, contributing to an enhanced retrieval of the extinction memory. Moreover, the nNOS-PSD-95 uncoupling-induced neurogenesis may be mediated by the extracellular signal-regulated kinase (ERK) as the phosphorylation level of ERK1/2 was increased after uncoupling. These findings suggest that the nNOS-PSD-95 complex may serve as a novel target for the treatment of post-traumatic stress disorder (PTSD).


Assuntos
Giro Denteado/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Rememoração Mental/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/fisiologia
16.
Proteomics Clin Appl ; 11(5-6)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27921394

RESUMO

PURPOSE: Plasma leptin is secreted from adipose tissues and plays pivotal roles in human physiological and pathological processes. Here, we aimed at conducting a protein biochip-based sandwich-like approach for detection of plasma leptin among healthy individuals, obesity, and diabetes patients. EXPERIMENTAL DESIGN: Totally, 96 plasma samples, including 45 healthy individuals with standard body mass index (BMI), 28 obesity and 23 diabetes patients, were recruited in the study. Plasma leptin was detected by a well-established protein biochip. Meanwhile an ELISA was also performed for assessment of the leptin detection by the protein biochip. RESULTS: We found that the plasma leptin level in the obesity and diabetes patients was significantly higher than that in healthy individuals with standard body mass index (p < 0.001). The limit detection concentration of leptin was as low as 0.006 µg/mL. The plasma leptin could be semiquantitatively detected by the protein biochip. The compatibility of the biochip-based detection approach seemed acceptable in comparison with the ELISA assay (R2 = 0.948). CONCLUSIONS: We provided a protein biochip-based approach for plasma detection. This approach would be a potential substitution for the ELISA assay.


Assuntos
Análise Química do Sangue/métodos , Leptina/sangue , Análise Serial de Proteínas , Adulto , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Leptina/imunologia , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Sci Rep ; 6: 29551, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27404655

RESUMO

Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors.


Assuntos
Ansiedade/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurogênese , Receptor 5-HT1A de Serotonina/metabolismo , Sinapses/metabolismo , Animais , Dendritos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...