Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 893250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707699

RESUMO

Computer-aided diagnosis (CAD) has undergone rapid development with the advent of advanced neuroimaging and machine learning methods. Nevertheless, how to extract discriminative features from the limited and high-dimensional data is not ideal, especially for amnesic mild cognitive impairment (aMCI) data based on resting-state functional magnetic resonance imaging (rs-fMRI). Furthermore, a robust and reliable system for aMCI detection is conducive to timely detecting and screening subjects at a high risk of Alzheimer's disease (AD). In this scenario, we first develop the mask generation strategy based on within-class and between-class criterion (MGS-WBC), which primarily aims at reducing data redundancy and excavating multiscale features of the brain. Concurrently, vector generation for brain networks based on Laplacian matrix (VGBN-LM) is presented to obtain the global features of the functional network. Finally, all multiscale features are fused to further improve the diagnostic performance of aMCI. Typical classifiers for small data learning, such as naive Bayesian (NB), linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVMs), are adopted to evaluate the diagnostic performance of aMCI. This study helps to reveal discriminative neuroimaging features, and outperforms the state-of-the-art methods, providing new insights for the intelligent construction of CAD system of aMCI.

2.
Front Neurosci ; 14: 577937, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041768

RESUMO

Magnetic Resonance Imaging (MRI) is an indispensable tool in the diagnosis of brain diseases due to painlessness and safety. Nevertheless, Rician noise is inevitably injected during the image acquisition process, which leads to poor observation and interferes with the treatment. Owing to the complexity of Rician noise, using the elimination method of Gaussian to remove it does not perform well. Therefore, the feature fusion and attention network (FFA-DMRI) is proposed to separate noise from observed MRI. Inspired by the attention-guided CNN network (ADNet) and Convolutional block attention module (CBAM), a spatial attention mechanism has been specially designed to obtain the area of interest in MRI. Furthermore, the feature fusion block concatenates local with global information, which makes full use of the multilevel structure and boosts the expressive ability of network. The comprehensive experiments on Alzheimer's disease neuroimaging initiative dataset (ADNI) have demonstrated high effectiveness of FFA-DMRI with maintaining the crucial brain details. Moreover, in terms of visual inspections, the denoising results are also consistent with human perception.

3.
Front Neurosci ; 14: 288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390791

RESUMO

The subjective cognitive decline (SCD) may last for decades prior to the onset of dementia and has been proposed as a risk population for development to amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD). Disruptions of functional connectivity and causal connectivity (CC) in the salience network (SN) are generally perceived as prominent hallmarks of the preclinical AD. Nevertheless, the alterations in anterior SN (aSN), and posterior SN (pSN) remain unclear. Here, we hypothesized that both the functional connectivity (FC) and CC of the SN subnetworks, comprising aSN and pSN, were distinct disruptive in the SCD and aMCI. We utilized resting-state functional magnetic resonance imaging to investigate the altered FC and CC of the SN subnetworks in 28 healthy controls, 23 SCD subjects, and 29 aMCI subjects. In terms of altered patterns of FC in SN subnetworks, aSN connected to the whole brain was significantly increased in the left orbital superior frontal gyrus, left insula lobule, right caudate lobule, and left rolandic operculum gyrus (ROG), whereas decreased FC was found in the left cerebellum superior lobule and left middle temporal gyrus when compared with the HC group. Notably, no prominent statistical differences were obtained in pSN. For altered patterns of CC in SN subnetworks, compared to the HC group, the aberrant connections in aMCI group were separately involved in the right cerebellum inferior lobule (CIL), right supplementary motor area (SMA), and left ROG, whereas the SCD group exhibited more regions of aberrant connection, comprising the right superior parietal lobule, right CIL, left inferior parietal lobule, left post-central gyrus (PG), and right angular gyrus. Especially, SCD group showed increased CC in the right CIL and left PG, whereas the aMCI group showed decreased CC in the left pre-cuneus, corpus callosum, and right SMA when compared to the SCD group. Collectively, our results suggest that analyzing the altered FC and CC observed in SN subnetworks, served as impressible neuroimaging biomarkers, may supply novel insights for designing preclinical interventions in the preclinical stages of AD.

4.
Front Neurosci ; 14: 185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265623

RESUMO

Alzheimer's disease (AD), which most commonly occurs in the elder, is a chronic neurodegenerative disease with no agreed drugs or treatment protocols at present. Amnestic mild cognitive impairment (aMCI), earlier than AD onset and later than subjective cognitive decline (SCD) onset, has a serious probability of converting into AD. The SCD, which can last for decades, subjectively complains of decline impairment in memory. Distinct altered patterns of default mode network (DMN) subnetworks connected to the whole brain are perceived as prominent hallmarks of the early stages of AD. Nevertheless, the aberrant phase position connectivity (PPC) connected to the whole brain in DMN subnetworks remains unknown. Here, we hypothesized that there exist distinct variations of PPC in DMN subnetworks connected to the whole brain for patients with SCD and aMCI, which might be acted as discriminatory neuroimaging biomarkers. We recruited 27 healthy controls (HC), 20 SCD and 28 aMCI subjects, respectively, to explore aberrant patterns of PPC in DMN subnetworks connected to the whole brain. In anterior DMN (aDMN), SCD group exhibited aberrant PPC in the regions of right superior cerebellum lobule (SCL), right superior frontal gyrus of medial part (SFGMP), and left fusiform gyrus (FG) in comparison of HC group, by contrast, no prominent difference was found in aMCI group. It is important to note that aMCI group showed increased PPC in the right SFGMP in comparison with SCD group. For posterior DMN (pDMN), SCD group showed decreased PPC in the left superior parietal lobule (SPL) and right superior frontal gyrus (SFG) compared to HC group. It is noteworthy that aMCI group showed decreased PPC in the left middle frontal gyrus of orbital part (MFGOP) and right SFG compared to HC group, yet increased PPC was found in the left superior temporal gyrus of temporal pole (STGTP). Additionally, aMCI group exhibited decreased PPC in the left MFGOP compared to SCD group. Collectively, our results have shown that the aberrant regions of PPC observed in DMN are related to cognitive function, and it might also be served as impressible neuroimaging biomarkers for timely intervention before AD occurs.

5.
Sci Rep ; 7: 44412, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294123

RESUMO

Taking the Guangxi Beibu Gulf Economic Zone as the study area, this paper utilizes the geographical detector model to quantify the feedback effects from the terrestrial environment on precipitation variation from 1985 to 2010 with a comprehensive consideration of natural factors (forest coverage rate, vegetation type, terrain, terrestrial ecosystem types, land use and land cover change) and social factors (population density, farmland rate, GDP and urbanization rate). First, we found that the precipitation trend rate in the Beibu Gulf Economic Zone is between -47 and 96 mm/10a. Second, forest coverage rate change (FCRC), urbanization rate change (URC), GDP change (GDPC) and population density change (PDC) have a larger contribution to precipitation change through land-surface feedback, which makes them the leading factors. Third, the human element is found to primarily account for the precipitation changes in this region, as humans are the active media linking and enhancing these impact factors. Finally, it can be concluded that the interaction of impact factor pairs has a significant effect compared to the corresponding single factor on precipitation changes. The geographical detector model offers an analytical framework to reveal the terrestrial factors affecting the precipitation change, which gives direction for future work on regional climate modeling and analyses.

6.
Chemosphere ; 174: 585-592, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28193591

RESUMO

In this study, hydroponic experiments were conducted to investigate the role of Fe-Mn plaque and Arthrobacter echigonensis MN1405 under different solution Cd levels (0, 2 and 50 mg L-1) on Cd uptake and translocation by Phytolacca acinosa Roxb. (P. acinosa). Results showed Cd accumulated by P.acinosa without plaque were mostly distributed in root surface, indicating that an exclusion strategy for Cd tolerance. The formation of Fe-Mn plaque could contribute to the increase in the Cd tolerance of P.acinosa, promotion of the growth, increase in the enhancement of Cd translocation. Among all the treatments, Fe-Mn plaque treatments inoculated with MN1405 accumulated the maximum DCB-Cd (46.61 ± 6.36 g kg-1) and had the highest value of TFaeria (2.14 ± 0.01) at 50 mg L-1 and 2 mg L-1 solution for Cd, respectively, demonstrating the greatest capacity to accumulate and translocate Cd. The uptake of Cd by P. acinosa in plaque treatments may result in the increase of soluble sugar and decrease of soluble protein synthesized from roots which involved in Cd detoxification and thus diminished the negative effects of Cd to some extent.


Assuntos
Cádmio/metabolismo , Ferro/metabolismo , Phytolacca/metabolismo , Arthrobacter/metabolismo , Hidroponia , Raízes de Plantas/metabolismo
7.
Int J Phytoremediation ; 18(10): 956-65, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-27159623

RESUMO

The growth and metal-extraction efficiency of plants when exposed to toxic metals can be enhanced by inoculating with certain bacteria, but the mechanisms of this process remain unclear. We report results from glasshouse experiments on the effect of Arthrobacter echigonensis MN1405 in promoting Phytolacca acinosa Roxb. growth when exposed to 100 mg/L Mn solution. Mn removal efficiency in solution was significantly enhanced by bacterial inoculation; Mn was accumulated in the root of P. acinosa Roxb. plant. The bacteria oxidized the Mn on root surface, which formed a Mn plaque to serve as a barrier or a containment to prevent metal toxicity. In this process, pH condition was an important factor on the effects of microbial-assisted heavy metal phytoremediation. Our finding suggests that A. echigonensis MN1405 assisted P. acinosa to achieve high remediation efficiency of Mn removal and accumulation in Mn contamination area.


Assuntos
Arthrobacter/fisiologia , Biodegradação Ambiental , Manganês/metabolismo , Phytolacca/fisiologia , Poluentes do Solo/metabolismo , Phytolacca/crescimento & desenvolvimento , Phytolacca/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...