Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17456, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261535

RESUMO

The cyclic loading frequency (fcyc) effects on the resilient modulus (Mr) of freezing-thawing coarse-fine mixtures geomaterials (FTCFG) have always been a research hotspot. A series of long-term cyclic triaxial tests were conducted on FTCFG having different fines content (FC) under different number of freeze-thaw cycles (NFT) to investigate the effect of fcyc and deviator stress amplitude (qcyc) on the Mr of FTCFG. The freezing-thawing cyclic was found to improve the Mr of FTCFG. Additionally, Mr of FTCFG shown an obviously rate-dependent characteristics. Then three kinetic effects (rate effect, piston effect, and fatigue effect) are discussed in systemically which are related to qcyc, fcyc and moisture holding capacity (wh). Finally, a rate dependent model of long-term resilient modulus was developed to predict FTCFG materials' resilient moduli as a function of qcyc, fcyc and wh. The comparisons between the calculation and experimental results reveal that the present model describes the Mr of FTCFG well.

2.
Materials (Basel) ; 15(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36143611

RESUMO

The ballast bed constantly degrades under the repeated applications of impact loading exerted by passing trains in terms of the particle size, shape, breakage, fouling, etc., thus significantly jeopardizing the in-service performance and operational safety of ballasted tracks. In this study, the morphology and breakage evolution characteristics of railroad ballasts of single- and multiple-size ranges were investigated from laboratory impact-load tests. Both a concrete block and sand layer were placed to mimic the distinct under-ballast supports. The degradation trends of the typical shape and breakage indices were comparatively quantified for different combinations of ballast particle sizes and shapes, under-ballast supports, impact energies, and number of impact-load applications (N). The results show that both shape and size affect ballast particle breakage, with shape being more influential. The breakage severity of flake-like particles is about 1.5-1.66 times and 1.25-1.5 times higher than those of regular and needle-like particles, respectively. Under impact loading, large and small single-size ballasts degrade mainly by breakage and abrasion, respectively. The modified fouling index (FI) of flake-like particles within 31.5-40 mm is about 3.6 times that of regular particles within 50-63 mm. The shape indices of the ballast particles within 31.5-40 mm exhibit the most profound changes. The severities of the ballast breakage and fines generation (or modified FI) increased by 50% and 74%, respectively, due to the increase in the under-ballast support stiffness by 100 times and the drop height of 80 cm, respectively. The convexity and ballast breakage index (BBI) are promising for quantifying particle-degradation trends, and their statistical correlation found herein is potentially useful for the transition of ballast-bed-maintenance management from the current plan-based scheduling to condition-based upgrading.

3.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591499

RESUMO

In the era of high-speed trains, it is very important to ensure the safety and stability of rail tracks under adverse conditions including seasonal freezing and thawing. Freeze-thaw cycles (FTCs) affecting the engineering performance of coarse-grained soil (CGS) is one of the major reasons for track deterioration. The reported results of a number of static freeze-thaw triaxial tests on the shear behaviour of CGS are analysed herein. It was observed that confining pressure (σ3) and FTCs have a significant influence on the shear behaviour of CGS. In this paper, an empirical mathematical model has been proposed to capture the dilatancy of CGS subjected to FTCs during shearing. The empirical constants a, b, and c proposed in the model are a function of σ3 and FTCs. The results of the model have been compared with the laboratory experiments and are found to be in good agreement.

4.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408002

RESUMO

Rail fasteners are among the key components of ballasted track of high-speed railway due to their functionality of fixing rails to sleepers. The failure of rail fastening system hinders the transmission of train loads to underlying track substructure and therefore endangers the operation safety and longevity of ballasted track. This paper first established a three-dimensional (3D) numerical model of the train-ballasted track-subgrade coupling system by integrating multibody dynamics (MBD) and finite element method (FEM). Numerical simulations were then performed to investigate the effects of different patterns of rail fastener failure (i.e., consecutive single-side, alternate single-side, and consecutive double-side) on critical dynamic responses of track structures, train running stability, and operation safety. The results show that the resulting influences of different patterns of rail fastener failure descend in the order of consecutive double-side failure, consecutive single-side failure, and alternate single-side failure. As the number of failed fasteners increases, the range where dynamic responses of track structures are influenced extends, and the failure of two consecutive single-side fasteners exerts a similar influence as that of four alternate single-side fasteners. The failure of single-side fasteners affects dynamic responses of the intact side of track structures relatively insignificantly. The influence of rail fastener failure on track structures exhibits hysteresis, thus indicating that special attention needs to be paid to locations behind failed fasteners during track inspection and maintenance. The occurrence of the failure of two or more consecutive fasteners demands timely maintenance work in order to prevent aggravated deterioration of track structures. The findings of this study could provide useful reference and guidance to smart track condition assessment and condition-based track maintenance.

5.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408008

RESUMO

Building demolition waste (BDW) has been massively stockpiled due to increasingly rapid urbanization and modernization. The use of recycled BDW as unbound granular base/subbase materials is among the sustainable, cost-effective, and environmentally friendly pavement construction alternatives. The resilient modulus is an important mechanical property of BDW-derived aggregates and mechanistic design input of pavements incorporating BDW. This paper presents the results of a comprehensive laboratory study on the shear strength and resilient modulus characteristics of BDW-derived aggregate materials. A series of monotonic triaxial compression tests and repeated-load triaxial (RLT) tests were conducted with five different gradations representing particle breakage and different stress paths. The apparent cohesion and internal friction angle of recycled BDW aggregates under consolidated drained conditions ranged from 35.3 to 57.5 kPa and from 30.2° to 54.3°, respectively. The apparent cohesion and internal friction angle also increased and decreased non-linearly with the increasing relative content of fine particles, respectively. The resilient modulus of recycled BDW aggregates gradually decreased with increasing relative content of fine particles at the same stress level. Both the deviator stress and confining pressure exhibited significant influences on the resilient modulus, while the effect of confining pressure was more profound. Based on laboratory testing data, a mechanistic-empirical model was developed to predict the resilient modulus of recycled BDW aggregates from gradation and stress-state variables. The findings could be useful for extended engineering applications of BDW in unbound granular pavement base/subbase construction.

6.
Materials (Basel) ; 14(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832372

RESUMO

Coarse-grained materials are widely used in high-speed railway construction, and it is of great significance to research its compaction characteristics due to the high quality control requirements. In this regard, a field compaction experiment was conducted at a subgrade near Bazhou Station of Beijing-Xiong'an Intercity Railway. The test results of the compaction effect were presented in this study at first. The roller-integrated compaction measurements (i.e., compaction meter value, CMV) were compared with several traditional in-situ tests (i.e., plate load test, light falling weight deflectometer test, and shear wave velocity test). Then the stability of CMV was evaluated by the proposed δ criterion. The spatial uniformity of compaction was further investigated. Based on the analysis, the target value of CMV was preliminarily determined. It showed that Evd was more variable than CMV. The results convincingly indicated that the compaction parameters increased with the increasing number of roller passes at first. A further increase in compaction effort could result in the decompaction of material when the compaction number up to a certain value. The stability analysis method proposed in this study showed its potency of quantifying the percentage of areas with acceptable compaction. The geostatistical analysis could reflect the spatial uniformity of compaction. Overall, the conducted study could provide a useful reference for geo-material compaction control in the transportation engineering.

7.
Materials (Basel) ; 12(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344812

RESUMO

In this study, a new type of composite modified bitumen was developed by blending styrene-butadiene-styrene (SBS) and crumb rubber (CR) with a chemical method to satisfy the durability requirements of waterproofing material in the waterproofing layer of high-speed railway subgrade. A pressure-aging-vessel test for 20, 40 and 80 h were conducted to obtain bitumen samples in different long-term aging conditions. Multiple stress creep recovery (MSCR) tests, linear amplitude scanning tests and bending beam rheometer tests were conducted on three kinds of asphalt binders (SBS modified asphalt, CR modified asphalt and SBS/CR composite modified asphalt) after different long-term aging processes, including high temperature permanent deformation performance, resistance to low temperature thermal and fatigue crack. Meanwhile, aging sensitivities were compared by different rheological indices. Results showed that SBS/CR composite modified asphalt possessed the best properties before and after aging. The elastic property of CR in SBS/CR composite modified asphalt improved the ability to resist low temperature thermal and fatigue cracks at a range of low and middle temperatures. Simultaneously, the copolymer network of SBS and CR significantly improved the elastic response of the asphalt SBS/CR modified asphalt at a range of high temperatures. Furthermore, all test results indicated that the SBS/CR modified asphalt possesses the outstanding ability to anti-aging. SBS/CR is an ideal kind of asphalt to satisfy the demand of 60 years of service life in the subgrade of high speed railway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...