Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Cell Biol ; 42(7): 399-410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37347924

RESUMO

Circular RNAs (circRNAs) are generally formed by the back-splicing of precursor mRNA. Increasing evidence implicates the important role of circRNAs in cardiovascular diseases. However, the role of circ-insulin-like growth factor 1 receptor (circIGF1R) in cardiomyocyte (CM) proliferation remains unclear. Here, we investigated the potential role of the circIGF1R in the proliferation of CMs. We found that circIGF1R expression in heart tissues and primary CMs from adult mice was significantly lower than that in neonatal mice at postnatal 1 day (p1). Increased circIGF1R expression was detected in the injured neonatal heart at 0.5 and 1 days post-resection. circIGF1R knockdown significantly decreased the proliferation of primary CMs. Combined prediction software, luciferase reporter gene analysis, and quantitative real time-PCR (qPCR) revealed that circIGF1R interacted with miR-362-5p. A significant increase in miR-362-5p expression was detected in the adult heart compared with that in the neonatal heart. Further, heart injury significantly decreased the expression of miR-362-5p in neonatal mice. Treatment with miR-362-5p mimics significantly suppressed the proliferation of primary CMs, whereas knockdown of miR-362-5p promoted the CMs proliferation. Meanwhile, miR-362-5p silencing can rescue the proliferation inhibition of CMs induced by circIGF1R knockdown. Target prediction and qPCR validation revealed that miR-362-5p significantly inhibited the expression of Phf3 in primary CMs. In addition, decreased Phf3 expression was detected in adult hearts compared with neonatal hearts. Consistently, increased Phf3 expression was detected in injured neonatal hearts compared with that in sham hearts. Knockdown of Phf3 markedly repressed CMs proliferation. Taken together, these findings suggest that circIGF1R might contribute to cardiomyocyte proliferation by promoting Pfh3 expression by sponging miR-362-5p and provide an important experimental basis for the regulation of heart regeneration.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Animais , Camundongos , Miócitos Cardíacos , RNA Circular/genética , Proliferação de Células/genética , MicroRNAs/genética , Linhagem Celular Tumoral
2.
J Vis Exp ; (189)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36468701

RESUMO

It is known that in adult mammals, the heart has lost its regenerative capacity, making heart failure one of the leading causes of death worldwide. Previous research has demonstrated the regenerative ability of the heart of the adult Xenopus tropicalis, an anuran amphibian with a diploid genome and a close evolutionary relationship with mammals. Additionally, studies have shown that following ventricular apex resection, the heart can regenerate without scarring in X. tropicalis. Consequently, these previous results suggest that X. tropicalis is an appropriate alternative vertebrate model for the study of adult heart regeneration. A surgical model of cardiac regeneration in the adult X. tropicalis is presented herein. Briefly, the frogs were anesthetized and fixed; then, a small incision was made with iridectomy scissors, penetrating the skin and pericardium. Gentle pressure was applied to the ventricle, and the apex of the ventricle was then cut out with scissors. Cardiac injury and regeneration were confirmed by histology at 7-30 days post resection (dpr). This protocol established an apical resection model in adult X. tropicalis, which can be employed to elucidate the mechanisms of adult heart regeneration.


Assuntos
Insuficiência Cardíaca , Traumatismos Cardíacos , Animais , Xenopus , Ventrículos do Coração , Pericárdio , Mamíferos
3.
NPJ Regen Med ; 7(1): 33, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750775

RESUMO

Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.

4.
NPJ Regen Med ; 6(1): 36, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188056

RESUMO

Cardiovascular disease is the leading cause of death in the world due to losing regenerative capacity in the adult heart. Frogs possess remarkable capacities to regenerate multiple organs, including spinal cord, tail, and limb, but the response to heart injury and the underlying molecular mechanism remains largely unclear. Here we demonstrated that cardiomyocyte proliferation greatly contributes to heart regeneration in adult X. tropicalis upon apex resection. Using RNA-seq and qPCR, we found that the expression of Fos-like antigen 1 (Fosl1) was dramatically upregulated in early stage of heart injury. To study Fosl1 function in heart regeneration, its expression was modulated in vitro and in vivo. Overexpression of X. tropicalis Fosl1 significantly promoted the proliferation of cardiomyocyte cell line H9c2. Consistently, endogenous Fosl1 knockdown suppressed the proliferation of H9c2 cells and primary cardiomyocytes isolated from neonatal mice. Taking use of a cardiomyocyte-specific dominant-negative approach, we show that blocking Fosl1 function leads to defects in cardiomyocyte proliferation during X. tropicalis heart regeneration. We further show that knockdown of Fosl1 can suppress the capacity of heart regeneration in neonatal mice, but overexpression of Fosl1 can improve the cardiac function in adult mouse upon myocardium infarction. Co-immunoprecipitation, luciferase reporter, and ChIP analysis reveal that Fosl1 interacts with JunB and promotes the expression of Cyclin-T1 (Ccnt1) during heart regeneration. In conclusion, we demonstrated that Fosl1 plays an essential role in cardiomyocyte proliferation and heart regeneration in vertebrates, at least in part, through interaction with JunB, thereby promoting expression of cell cycle regulators including Ccnt1.

5.
Gene Expr Patterns ; 35: 119091, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770608

RESUMO

The forkhead-box transcription factors of O subfamily (FOXO) play important roles in regulation of various biological functions. We cloned foxo1, foxo3, foxo4, and foxo6 from Xenopus tropicalis (hereafter X. tropicalis), and examined their expression in embryos and adult tissues. Maternal transcripts of foxo1 and foxo3 genes are detected within the animal half of the early embryo, their zygotic transcripts show distinct patterns. At late tailbud stages, foxo1 expression is observed mainly in eye, brain, branchial arches, and pronephros. In addition to eye, brain, branchial arches and pronephros, foxo3 expression is also evident in heart and somites. Foxo4 expression was not detected in oocytes. At late tailbud stages, foxo4 is mainly expressed in eye, brain, branchial arches and otic vesicle. Foxo6 expression was not detectable until stage 36, with a specific expression in nasal pits. Obvious expression of foxo1, foxo3 and foxo4, but not foxo6, is detected by RT-PCR both in oocytes and in embryos at examined stages. The expression of foxo1, foxo3 and foxo4 is observed in all tested adult tissues including heart, muscle, liver, lung, stomach and small intestine, while foxo6 is only detectable in stomach and small intestine. The differential expression pattern of foxo genes suggests that they exert distinct functions during embryonic development and in various organs of X. tropicalis.


Assuntos
Proteínas de Anfíbios/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Anfíbios/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Brônquios/embriologia , Brônquios/metabolismo , Olho/embriologia , Olho/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Coração/embriologia , Rim/embriologia , Rim/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Miocárdio/metabolismo , Xenopus
6.
Aging Cell ; 18(5): e12990, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264342

RESUMO

Paraquat (PQ) promotes cell senescence in brain tissue, which contributes to Parkinson's disease. Furthermore, PQ induces heart failure and oxidative damage, but it remains unknown whether and how PQ induces cardiac aging. Here, we demonstrate that PQ induces phenotypes associated with senescence of cardiomyocyte cell lines and results in cardiac aging-associated phenotypes including cardiac remodeling and dysfunction in vivo. Moreover, PQ inhibits the activation of Forkhead box O3 (FoxO3), an important longevity factor, both in vitro and in vivo. We found that PQ-induced senescence phenotypes, including proliferation inhibition, apoptosis, senescence-associated ß-galactosidase activity, and p16INK4a expression, were significantly enhanced by FoxO3 deficiency in cardiomyocytes. Notably, PQ-induced cardiac remolding, apoptosis, oxidative damage, and p16INK4a expression in hearts were exacerbated by FoxO3 deficiency. In addition, both in vitro deficiency and in vivo deficiency of FoxO3 greatly suppressed the activation of antioxidant enzymes including catalase (CAT) and superoxide dismutase 2 (SOD2) in the presence of PQ, which was accompanied by attenuation in cardiac function. The direct in vivo binding of FoxO3 to the promoters of the Cat and Sod2 genes in the heart was verified by chromatin immunoprecipitation (ChIP). Functionally, overexpression of Cat or Sod2 alleviated the PQ-induced senescence phenotypes in FoxO3-deficient cardiomyocyte cell lines. Overexpression of FoxO3 and CAT in hearts greatly suppressed the PQ-induced heart injury and phenotypes associated with aging. Collectively, these results suggest that FoxO3 protects the heart against an aging-associated decline in cardiac function in mice exposed to PQ, at least in part by upregulating the expression of antioxidant enzymes and suppressing oxidative stress.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Proteína Forkhead Box O3/metabolismo , Paraquat/antagonistas & inibidores , Substâncias Protetoras/metabolismo , Regulação para Cima , Envelhecimento/efeitos dos fármacos , Animais , Catalase/genética , Catalase/metabolismo , Coração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Paraquat/farmacologia , Fenótipo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Gene Expr Patterns ; 34: 119056, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31121318

RESUMO

Fos-like antigens (Fosl) including Fosl1 and Fosl2 exclusively heterodimerize with Jun members to form AP-1 complex, thereby participating in various cellular progresses including cell cycle regulation. However, expression patterns of these two genes during embryonic development remains largely unknown. In the present study, both temporal and spatial expression patterns of fosl1 and fosl2 were examined during embryonic development of Xenopus tropicalis. Real-time quantitative PCR results showed that the expression of the two genes was increased from stage 2 to stage 42. However, expression level of fosl1 is much higher than that of fosl2 at stage 42. Whole-mount in situ hybridization showed that fosl1 was expressed in eyes, branchial arch, notochord, otic vesicle, and liver. However, fosl2 was expressed in lung primordium from stage 34 to stage 38, in addition to the moderate expression in eyes and branchial arch at stage 42. Thus, the developmental expression patterns of these two fosl genes is different in Xenopus embryos. These results provide a basis for further functional study of these two genes.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Proto-Oncogênicas c-fos/genética , Xenopus/embriologia , Sequência de Aminoácidos/genética , Animais , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos , Xenopus/genética , Proteínas de Xenopus/genética
8.
Zool Res ; 40(2): 102-107, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30127333

RESUMO

Protein arginine methyltransferases (PRMTs) are involved in many cellular processes via the arginine methylation of histone or non-histone proteins. We examined the expression patterns of prmt4, prmt7, and prmt9 during embryogenesis in Xenopus using whole-mount in situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-PCR). Xenopus prmt4 and prmt7 were expressed in the neural crest, brain, and spinal cord, and also detected in the eye, branchial arches, and heart at the tailbud stage. Specific prmt9 signals were not detected in Xenopus embryos until the late tailbud stage when weak expression was observed in the branchial arches. Quantitative RT-PCR indicated that the expressions of prmt4 and prmt7 were up-regulated during the neurula stage, whereas prmt9 maintained its low expression until the late tailbud stage, consistent with the whole-mount in situ hybridization results. Thus, the developmental expression patterns of these three prmt genes in Xenopus embryos provide a basis for further functional study of such genes.


Assuntos
Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteína-Arginina N-Metiltransferases/genética
9.
FASEB J ; : fj201800093, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897811

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system has emerged as a powerful tool for knock-in of DNA fragments via donor plasmid and homology-independent DNA repair mechanism; however, conventional integration includes unnecessary plasmid backbone and may result in the unfaithful expression of the modified endogenous genes. Here, we report an efficient and precise CRISPR/Cas9-mediated integration strategy using a donor plasmid that harbors 2 of the same cleavage sites that flank the cassette at both sides. After the delivery of donor plasmid, together with Cas9 mRNA and guide RNA, into cells or fertilized eggs, concurrent cleavages at both sides of the exogenous cassette and the desired chromosomal site result in precise targeted integration without plasmid backbone. We successfully used this approach to precisely integrate the EGFP reporter gene into the myh6 locus or the GAPDH locus in Xenopus tropicalis or human cells, respectively. Furthermore, we demonstrate that replacing conventional terminators with the endogenous 3UTR of target genes in the cassette greatly improves the expression of reporter gene after integration. Our efficient and precise method will be useful for a variety of targeted genome modifications, not only in X. tropicalis, but also in mammalian cells, and can be readily adapted to many other organisms.-Mao, C.-Z., Zheng, L., Zhou, Y.-M., Wu, H.-Y., Xia, J.-B., Liang, C.-Q., Guo, X.-F., Peng, W.-T., Zhao, H., Cai, W.-B., Kim, S.-K., Park, K.-S., Cai, D.-Q., Qi, X.-F. CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis.

10.
J Cell Physiol ; 233(5): 4245-4257, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29057537

RESUMO

Unmethylated CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) ligand, has been shown to protect against myocardial ischemia/reperfusion injury. However, the potential effects of CpG-ODN on myocardial infarction (MI) induced by persistent ischemia remains unclear. Here, we investigated whether and how CpG-ODN preconditioning protects against MI in mice. C57BL/6 mice were treated with CpG-ODN by i.p. injection 2 hr prior to MI induction, and cardiac function, and histology were analyzed 2 weeks after MI. Both 1826-CpG and KSK-CpG preconditioning significantly improved the left ventricular (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS) when compared with non-CpG controls. Histological analysis further confirmed the cardioprotection of CpG-ODN preconditioning. In vitro studies further demonstrated that CpG-ODN preconditioning increases cardiomyocyte survival under hypoxic/ischemic conditions by enhancing stress tolerance through TLR9-mediated inhibition of the SERCA2/ATP and activation of AMPK pathways. Moreover, CpG-ODN preconditioning significantly increased angiogenesis in the infarcted myocardium compared with non-CpG. However, persistent TLR9 activation mediated by lentiviral infection failed to improve cardiac function after MI. Although CpG-ODN preconditioning increased angiogenesis in vitro, both the persistent stimulation of CpG-ODN and stable overexpression of TLR9 suppressed the tube formation of cardiac microvascular endothelial cells. CpG-ODN preconditioning significantly protects cardiac function against MI by suppressing the energy metabolism of cardiomyocytes and promoting angiogenesis. Our data also indicate that CpG-ODN preconditioning may be useful in MI therapy.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Receptor Toll-Like 9/genética
11.
Sci Rep ; 7(1): 13273, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038511

RESUMO

Vascular endothelial growth factor (VEGF) plays important roles in improvement of cardiac function following myocardial infarction (MI). However, the lack of a steerable delivery system of VEGF targeting the infarcted myocardium reduces the therapeutic efficacy and safety. Here, we constructed a series of lentiviral vector systems which could express a fusion protein consisted of a collagen-binding domain (CBD) and hVEGF (CBDhVEGF), under the control of 5HRE-hCMVmp (5HRE), the hypoxia-inducible promoter consists of five copies of the hypoxia-responsive element (HRE) and a human cytomegalovirus minimal promoter (hCMVmp). We demonstrated that 5HRE has the comparable ability to strongly drive CBDhVEGF under hypoxic condition as the ubiquitous CMV promoter, but it can hardly drive target gene under normoxic condition. 5HRE-drived CBDhVEGF specifically bound to type I collagen and significantly promoted the viability of HUVEC cells. Moreover, after injection of lentivirus into heart of mouse with MI, CBDhVEGF was mainly retained in infarcted myocardium where containing rich collagen and significantly improved angiogenesis and cardiac function when compared with hVEGF. Moreover, CBDhVEGF mediated by lentivirus has little leakage from infarcted zone into blood than hVEGF. Taken together, our results indicate that 5HRE-CBDhVEGF lentiviral vector system could improve cardiac function in the collagen-targeting and hypoxia-inducible manners.


Assuntos
Colágeno/genética , Técnicas de Transferência de Genes , Hipóxia/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/metabolismo , Lentivirus/genética , Camundongos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/terapia , Regiões Promotoras Genéticas , Elementos de Resposta , Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Gene Expr Patterns ; 23-24: 1-6, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034797

RESUMO

Recent studies suggest that ribosome-binding protein 1 (RRBP1) is involved in multiple diseases such as tumorigenesis and cardiomyopathies. However, its function during embryonic development remains largely unknown. We searched Xenopus laevis database with human RRBP1 protein sequence and identified two cDNA sequences encoding Xenopus orthologs of RRBP1 including rrbp1a (NM_001089623) and rrbp1b (NM_001092468). Both genes were firstly detected at blastula stage 8 with weak signals in animal hemisphere by whole mount in situ hybridization. Evident expression of rrbp1 was mainly detected in cement gland and notochord at neurula and tailbud stages. Heart expression of rrbp1 was detected at stage 36. RT-PCR results indicated that very weak expression of rrbp1a was firstly detected in oocytes, followed by increasing expression until stage 39. Differently, very weak expression of rrbp1b was firstly observed at stage 2, and then maintained at a lower level to stage 17 followed by an intense expression from stages 19-39. Moreover, both expression profiles were also different in adult tissues. This study reports Xenopus rrbp1 expression during early embryonic development and in adult tissues. Our study will facilitate the functional analysis of Rrbp1 family during embryonic development.


Assuntos
Proteínas de Transporte/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Transcriptoma , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
13.
Int J Mol Med ; 37(6): 1475-86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27082697

RESUMO

This study investigated the effects of estrogen on the bone regeneration potential of periodontal ligament stem cells (PDLSCs) derived from osteoporotic rats and seeded on a collagen-based composite scaffold [nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA)]. For this purpose, 48 healthy 3­month-old Sprague-Dawley female rats were divided into 2 groups as follows: the bilaterally ovariectomized (OVX) rats and sham­operated rats. The PDLSCs were isolated at 3 months after surgery (by which time postmenopausal osteoporosis had developed). The effects of estrogen on the characteristics of these cells seeded in a culture plate and of the cells seeded on nHAC/PLA were then investigated. The PDLSC + nHAC/PLA constructs were implanted subcutaneously into the backs of severe combined immunodeficient (SCID) mice for 12 weeks in order to examine the role of estrogen in the bone formation ability of PDLSCs derived from osteoporotic rats. The results from methyl thiazolyl tetrazolium (MTT) assay revealed that the proliferation of the cells derived from the rats in the OVX group was significantly higher than that of the cells derived from the rats in the sham-operated group at the stage of logarithmic growth. The staining intensity of alkaline phosphatase (ALP) and the mineralization of the cells derived from the rats in the OVX group was significantly weaker than that of the cells from the rats in the sham-operated group. When the PDLSCs were seeded on nHAC/PLA, ALP activity, osteocalcin (OCN) secretion, mineral formation and the mRNA expression levels of ALP, OCN, estrogen receptor (ER)α and ERß in the cells derived from the rats in the OVX group were markedly decreased. Treatment with 17ß-estradiol (E2) significantly weakened the proliferative ability of the cells derived from the OVX group rats, and enhanced their osteogenic differentiation ability and the mRNA expression levels of ALP, OCN, ERα and ERß. When the constructs were implanted into the backs of SCID mice for 12 weeks, the results of histological analysis indicated that the constructs derived from the OVX group rats had a few newly formed bones and osteoids; however, a great number of newly formed bones and osteoids were present in the ones from the sham-operated group and the OVX + E2 group rats. Our findings further indicate that estrogen deficiency impairs the osteogenic differentiation potential of PDLSCs, and that ER plays an important role in the bone regeneration ability of PDLSCs. Estrogen enhances the bone regeneration potential of PDLSCs derived from osteoporotic rats and seeded on nHAC/PLA. This study may provide insight into the clinical management of periodontal bone tissue repair in postmenopausal women with the use of estrogen-mediated PDLSCs seeded on nHAC/PLA.


Assuntos
Estradiol/farmacologia , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/química , Modelos Animais de Doenças , Durapatita/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Expressão Gênica , Camundongos , Camundongos SCID , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Ovariectomia , Ligamento Periodontal , Poliésteres/química , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Células-Tronco/patologia , Engenharia Tecidual , Alicerces Teciduais , Transplante Heterólogo
14.
Exp Mol Pathol ; 100(2): 257-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26835911

RESUMO

CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL10/farmacologia , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Receptores CXCR3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Hipóxia Celular , Células Cultivadas , Vasos Coronários/citologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores CXCR3/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
15.
Cytokine ; 81: 63-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26891076

RESUMO

CXCL10, the chemokine with potent chemotactic activity on immune cells and other non-immune cells expressing its receptor CXCR3, has been demonstrated to involve in myocardial infarction, which was resulted from hypoxia/ischemia. The cardiac microvascular endothelial cells (CMECs) are the first cell type which is implicated by hypoxia/ischemia. However, the potential molecular mechanism by which hypoxia/ischemia regulates the expression of CXCL10 in CMECs remains unclear. In the present study, the expression of CXCL10 was firstly examined by real-time PCR and ELISA analysis. Several potential binding sites (BS) for transcription factors including NF-kappaB (NFkB), HIF1 alpha (HIF1α) and FoxO3a were identified in the promoter region of CXCL10 gene from -2000 bp to -1 bp using bioinformatics software. Luciferase reporter gene vectors for CXCL10 promoter and for activation of above transcription factors were constructed. The activation of NFkB, hypoxia-inducible transcription factor-1 alpha (HIF-1α) and FoxO3a was also analyzed by Western blotting. It was shown that the production of CXCL10 in CMECs was significantly increased by hypoxia/ischemia treatment, in parallel with the activation of CXCL10 promoter examined by reporter gene vector system. Furthermore, transcription factors including NFkB, HIF1α and FoxO3a were activated by hypoxia/ischemia in CMECs. However, over-expression of NFkB, but not that of HIF1α or FoxO3a, significantly promoted the activation of CXCL10 promoter reporter gene. These findings indicated that CXCL10 production in CMECs was significantly increased by hypoxia/ischemia, at least in part, through activation of NFkB pathway and subsequently binding to CXCL10 promoter, finally promoted the transcription of CXCL10 gene.


Assuntos
Quimiocina CXCL10/metabolismo , Vasos Coronários/citologia , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Hipóxia Celular , Células Cultivadas , Quimiocina CXCL10/genética , Ensaio de Imunoadsorção Enzimática , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Mol Cell Cardiol ; 81: 114-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655933

RESUMO

FoxO3a plays an important role in the aging process and decreases with age. However, the potential regulatory roles of FoxO3a in processes involved in cardiac microvascular endothelial cell (CMEC) senescence, and its underlying molecular mechanisms have not been elucidated. This study demonstrates that FoxO3a is deactivated in senescent CMECs together with the inhibition of proliferation and tube formation. Furthermore, the activation of the antioxidant enzymes catalase and SOD, downstream FoxO3a targets, was significantly decreased, thereby leading to cell cycle arrest in G1-phase by increased ROS generation and subsequently the activation of the p27(Kip1) pathway. However, FoxO3a overexpression in primary low-passage CMECs not only significantly suppressed the senescence process by increasing the activation of catalase and SOD but also markedly inhibited ROS generation and p27(Kip1) activation, although it failed to reverse cellular senescence. Moreover, both cell viability and tube formation were greatly increased by FoxO3a overexpression in primary CMECs during continuous passage. In addition, FoxO3a, deficiency in low-passage CMECs, accelerated the senescence process. Collectively, our data suggest that FoxO3a suppresses the senescence process in CMECs by regulating the antioxidant/ROS/p27(Kip1) pathways, although it fails to reverse the cellular senescent phenotype.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/genética , Miocárdio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sequência de Bases , Catalase/genética , Catalase/metabolismo , Sobrevivência Celular , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endoteliais/patologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação da Expressão Gênica , Genes Reporter , Lentivirus/genética , Luciferases/genética , Luciferases/metabolismo , Dados de Sequência Molecular , Miocárdio/patologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
17.
Cancer Cell Int ; 13(1): 111, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24209962

RESUMO

Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. However, the relationship between apoptosis and autophagy in lymphoma cells exposed to statins remains unclear. The objective of this study was to elucidate the potential involvement of autophagy in fluvastatin-induced cell death of lymphoma cells. We found that fluvastatin treatment enhanced the activation of pro-apoptotic members such as caspase-3 and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells. The process was accompanied by increases in numbers of annexin V alone or annexin V/PI double positive cells. Furthermore, both autophagosomes and increases in levels of LC3-II were also observed in fluvastatin-treated lymphoma cells. However, apoptosis in fluvastatin-treated lymphoma cells could be blocked by the addition of 3-methyladenine (3-MA), the specific inhibitor of autophagy. Fluvastatin-induced activation of caspase-3, DNA fragmentation, and activation of LC3-II were blocked by metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggest that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.

18.
Exp Mol Pathol ; 95(2): 242-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23948278

RESUMO

FoxO3a, a member of the forkhead transcription factors, has been demonstrated to be involved in myocardial ischemia/reperfusion (I/R) injury. Cardiac microvascular endothelial cells (CMECs) are some of the predominant cells damaged immediately after myocardial I/R injury. Despite the importance of injured CMECs in an ischemic heart, little is known about the involvement of FoxO3a in regulating CMECs injury. Thus, we used rat CMECs following simulated I/R to examine FoxO3a activation and signaling in relation to survival, the cell cycle and apoptosis in CMECs. We found that Akt negatively regulates activation of the FoxO3a pathway by phosphorylating FoxO3a in CMECs as demonstrated with an Akt inhibitor and activator. Upon I/R injury, the FoxO3a pathway was significantly activated in CMECs, which was accompanied by Akt deactivation. In parallel, the I/R of CMECs induced G1-phase arrest through p27(Kip1) up-regulation and significant activation of caspase-3. Accordingly, inhibition of the FoxO3a pathway by IGF-1, an Akt activator, could significantly block the I/R-enhanced activation of p27(Kip1) and caspase-3 in CMECs. Collectively, our results indicate that the FoxO3a pathway is involved in the I/R injury of CMECs at least in part through the regulation of cell cycle arrest and apoptosis, suggesting that the FoxO3a pathway may be a novel therapeutic target that protects against microvascular endothelial damage in ischemic hearts.


Assuntos
Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais , Animais , Apoptose/fisiologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Proteína Forkhead Box O3 , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Mol Immunol ; 54(3-4): 327-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23357786

RESUMO

Recent studies have suggested that the anti-cancer activity of CpG-oligodeoxynucleotides (CpG-ODNs) is owing to their immunomodulatory effects in tumor-bearing host. The purpose of this study is to investigate the directly cytotoxic activity of KSK-CpG, a novel CpG-ODN with an alternative CpG motif, against A20 and EL4 lymphoma cells in comparison with previously used murine CpG motif (1826-CpG). To evaluate the potential cytotoxic effects of KSK-CpG on lymphoma cells, cell viability assay, confocal microscopy, flow cytometry, DNA fragmentation, Western blotting, and reverse transcription-polymerase chain reaction (RT-PCR) analysis were used. We found that KSK-CpG induced direct cytotoxicity in A20 lymphoma cells, but not in EL4 lymphoma cells, at least in part via TLR9-mediated pathways. Apoptotic cell death was demonstrated to play an important role in CpG-ODNs-induced cytotoxicity. In addition, both mitochondrial membrane potential decrease and G1-phase arrest were involved in KSK-CpG-induced apoptosis in A20 cells. The activities of apoptotic molecules such as caspase-3, PARP, and Bax were increased, but the activation of p27 Kip1 and ERK were decreased in KSK-CpG-treated A20 cells. Furthermore, autocrine IFN-γ partially contributed to apoptotic cell death in KSK-CpG-treated A20 cells. Collectively, our findings suggest that KSK-CpG induces apoptotic cell death in A20 lymphoma cells at least in part by inducing G1-phase arrest and autocrine IFN-γ via increasing TLR9 expression, without the need for immune system of tumor-bearing host. This new understanding supports the development of TLR9-targeted therapy with CpG-ODN as a direct therapeutic agent for treating B lymphoma.


Assuntos
Apoptose/efeitos dos fármacos , Linfoma/tratamento farmacológico , Oligodesoxirribonucleotídeos/farmacologia , Receptor Toll-Like 9/metabolismo , Animais , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1/efeitos dos fármacos , Fase G1/genética , Interferon gama/genética , Interferon gama/metabolismo , Linfoma/genética , Linfoma/metabolismo , Linfoma/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Camundongos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Receptor Toll-Like 9/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-21785648

RESUMO

Bambusae caulis in Liquamen (BCL), traditional herbal medicine used in East Asia, is known to have antioxidative and immune-regulating properties. We hypothesized that the potential antioxidant effects of BCL might suppress the production of thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) in human keratinocytes (HaCaT cell). The immune-regulating effect of BCL was demonstrated by antioxidant capacity using DPPH analysis and DCFH-DA analysis. We found that BCL had strong ROS scavenge effect in HaCaT cell. BCL also showed suppression of IFN-γ-induced expression of TARC and MDC, activation of NF-κB, and, moreover, significant block of IFN-γ-induced degradation and phosphorylation of IκB. However, it had no effects on phosphorylation of p38 MAPK. Collectively, these results suggest that BCL may have a therapeutic potential on skin disease such as atopic dermatitis by inhibiting Th2 chemokines which is due, at least in part, to its antioxidant capacities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...