Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 166: 203-210, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182253

RESUMO

Thermal treatment is a promising treatment technology of municipal solid waste incineration (MSWI) fly ash because of its detoxication and volume reduction. However, the relationship between immobilization of heavy metals and mineral transformation during thermal treatment remains unclear. In this study, the immobilization mechanism of Zn during thermal treatment process of MSWI fly ash was investigated by experiment and calculation. The results show that addition of SiO2 facilitates transition of dominant minerals from melilite to anorthite during sintering, increases liquid content during melting and improves liquid polymerization degree during vitrification. ZnCl2 tends to be physically encapsulated by liquid phase, and ZnO is mainly chemically fixed into minerals at high temperature. Increase in both liquid content and liquid polymerization degree favors the physical encapsulation of ZnCl2. The decreasing order of chemical fixation ability of minerals to ZnO is spinel > melilite > liquid > anorthite. To better immobilize Zn during sintering and vitrification process chemical composition of MSWI fly ash should be located in melilite and anorthite primary phases of pseudo-ternary phase diagram, respectively. The results are helpful to understand immobilization mechanism of heavy metals and avoid volatilization of heavy metals during thermal treatment process of MSWI fly ash.


Assuntos
Metais Pesados , Eliminação de Resíduos , Óxido de Zinco , Incineração , Cinza de Carvão , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Material Particulado/química , Dióxido de Silício , Carbono/química , Minerais , Metais Pesados/análise , Zinco
2.
Indoor Air ; 31(6): 1691-1706, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34181775

RESUMO

Indoor ammonia (NH3 ) pollution has been paid more and more attention in view of its health risk. However, few studies have investigated the exposure level in the non-occupational environment in China. This study systematically reviewed the indoor ammonia exposure level in different regions, the equivalent exposure concentration of different populations, and the factors that influence indoor air ammonia in residences, offices, and schools in China. The literature published in 1980-2019 from main databases was searched and detailed screened, and finally, 56 related studies were selected. The results illustrated that the median concentration of indoor air ammonia in residences, offices, and school buildings was 0.21 mg/m3 , 0.26 mg/m3 , and 0.15 mg/m3 . There were 46.4%, 71.4%, and 40% of these samples exceeding the NH3  standard, respectively. The national concentrations and the equivalent exposure levels of adults and children were calculated and found to be higher than 0.20 mg/m3 . The concentration of ammonia varied greatly in different climate zones and economic development regions. Higher concentrations were found in the severe cold zone and the regions with higher economic level. This review reveals a high exposure risk of indoor air ammonia and the crucial impact of human emission, indoor air temperature, new concrete, and economic level, suggesting further investigation on indoor air ammonia evaluation and health effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Amônia/análise , Criança , China , Monitoramento Ambiental , Humanos , Instituições Acadêmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...