Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049104

RESUMO

The crevice corrosion of the 7075-T651 aluminium alloy was investigated using in situ electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves (PC), and H+ sensors in acidic NaCl solution with different contents of NaNO3. In the solution without NaNO3, the pH in the crevice increased rapidly and gradually reached a relatively stable status. The corrosion of the aluminium alloy in the crevice was inhibited and crevice corrosion could not be initiated. In the solution with NaNO3, the pH increased rapidly at the initial immersion period and then decreased gradually. The corrosion of the aluminium alloy inside the crevice could be enhanced and the corrosion of the aluminium alloy outside crevice could be inhibited. This triggered crevice corrosion in the solution with NaNO3. The inhibited corrosion outside the crevice can be attributed to the improved passive film of the specimen outside the crevice by nitrate. The accumulated secondary products of ammonia inside the crevice led to selective dissolution of copper, which triggered the nucleation of pitting corrosion and promoted the corrosion of the specimen inside the crevice.

2.
Materials (Basel) ; 17(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38204072

RESUMO

As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti-Cu coating. The porosity (~4.8%) and average pore size (~0.42 µm) of the Ti-Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 µm) of Ti-blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti-Cu coating compared to the Ti-blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.

3.
Colloids Surf B Biointerfaces ; 202: 111667, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706164

RESUMO

In the development of biocompatible materials for biomedical applications, infections and their resulting inflammation responses are important issues caused typically by the adhesion of micro-organisms on medical devices. Recently slippery liquid-infused porous surfaces (SLIPS) has provided a new strategy for anti-biofouling and low-adhesion surfaces, however, there are still some bottlenecks in practical uses, particularly the loss of lubricant significantly restricts the durability and stability of SLIPS. In this paper, we micro-fabricated well-controlled micro-cavities with different profiles (vertical or inclined walls) to investigate the long-term anti-biofouling effect of SLIPS. We explored microstructure geometries in two aspects: the aspect ratio and the slope angle relevant with the Laplace pressure and the oil contact area which lead to different oil-locking abilities. High aspect ratio and inclined slope were demonstrated with better oil-locking ability as well as significantly increased anti-fouling performances. Under the same experimental setup, the Escherichia coli and Staphylococcus aureus bacteria coverage on SLIPS with 80 µm-depth 20° inclined micro-cavities was only ∼30 % of that with vertical micro-cavities, while increasing aspect ratio by 4 times induced ∼3 times enhanced anti-fouling effect. On basis of these findings, we propose the enhanced SLIPS with inclined microstructures to achieve better oil-locking ability and long-term anti-biofouling performance, which may broaden many practical applications of SLIPS.


Assuntos
Incrustação Biológica , Materiais Biocompatíveis , Incrustação Biológica/prevenção & controle , Lubrificantes , Porosidade , Propriedades de Superfície
4.
Front Neural Circuits ; 14: 562005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536878

RESUMO

Starting from the inductance in neurons, two physical origins are discussed, which are the coil inductance of myelin and the piezoelectric effect of the cell membrane. The direct evidence of the coil inductance of myelin is the opposite spiraling phenomenon between adjacent myelin sheaths confirmed by previous studies. As for the piezoelectric effect of the cell membrane, which has been well-known in physics, the direct evidence is the mechanical wave accompany with action potential. Therefore, a more complete physical nature of neural signals is provided. In conventional neuroscience, the neural signal is a pure electrical signal. In our new theory, the neural signal is an energy pulse containing electrical, magnetic, and mechanical components. Such a physical understanding of the neural signal and neural systems significantly improve the knowledge of the neurons. On the one hand, we achieve a corrected neural circuit of an inductor-capacitor-capacitor (LCC) form, whose frequency response and electrical characteristics have been validated by previous studies and the modeling fitting of artifacts in our experiments. On the other hand, a number of phenomena observed in neural experiments are explained. In particular, they are the mechanism of magnetic nerve stimulations and ultrasound nerve stimulations, the MRI image contrast issue and Anode Break Excitation. At last, the biological function of myelin is summarized. It is to provide inductance in the process of neural signal, which can enhance the signal speed in peripheral nervous systems and provide frequency modulation function in central nervous systems.


Assuntos
Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Neurociências , Potenciais de Ação/fisiologia , Animais , Sistema Nervoso Central/patologia , Humanos , Imageamento por Ressonância Magnética/métodos
5.
Materials (Basel) ; 11(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453489

RESUMO

Following our previous research, the correlation between the micro-chemistry of grain boundary and the distribution of stored energy in AA2024-T3 alloy is investigated, using the combination of transmission Kikuchi diffraction and transmission electron microscopy. It is found that the difference of dislocation density, namely stored energy, between two neighboring grains significantly affects the micro-chemistry of the grain boundary. Further, it is revealed that intergranular corrosion development in the AA2024-T3 alloy is mainly attributed to the combined effect of grain boundary chemistry and stored energy distribution.

6.
RSC Adv ; 8(42): 23727-23741, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540283

RESUMO

Nanocomposite reinforced polyurethane (PU) coatings have been prepared by an ultrasonication method with polydopamine-wrapped carbon nanotubes (PDA@CNTs) as the nanofiller. The influence of the PDA@CNTs enhanced PU coating on the corrosion resistance and adhesion strength to Al-alloy was investigated by electrochemical impedance spectroscopy and the pull-off test during cyclic ageing tests, including the salt spraying test, UV irradiation and solution immersion. A comparison of the pristine PU against CNTs modified PU coatings revealed that the higher CNTs loading (2.0 wt%) increased the heterogeneity and porosity of PU, which could deteriorate the corrosion barrier of PU due to the poor dispersity, even though it also increased the adhesion strength of PU. In contrast, the PDA wrapped CNTs could improve the dispersibility of the CNTs in the PU matrix thanks to the greater compatibility of PDA with PU compared to CNTs. Further experiments indicated that increasing the PDA@CNTs loading could improve the adhesion strength, but and also increase the corrosion resistance of the PU coating to 107 Ω cm2 even after 7 cycles of ageing tests. Morphological observations indicated that the PDA@CNTs could increase the compactness and decrease the defects of PU, preventing the initiation and propagation of micro-defects in the PU coating during long-term ageing tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...