Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 255: 115401, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116265

RESUMO

Discovering new anticancer drugs has been widely concerned and remains an open challenge. Target- and phenotypic-based experimental screening represent two mainstream anticancer drug discovery methods, which suffer from time-consuming, labor-intensive, and high experimental costs. In this study, we collected 485,900 compounds involving in 3,919,974 bioactivity records against 426 anticancer targets and 346 cancer cell lines from academic literature, as well as 60 tumor cell lines from NCI-60 panel. A total of 832 classification models (426 target- and 406 cell-based predictive models) were then constructed to predict the inhibitory activity of compounds against targets and tumor cell lines using FP-GNN deep learning method. Compared to the classical machine learning and deep learning methods, the FP-GNN models achieve considerable overall predictive performance, with the highest AUC values of 0.91, 0.88, 0.91 for the test sets of targets, academia-sourced and NCI-60 cancer cell lines, respectively. A user-friendly webserver called DeepCancerMap and its local version were developed based on these high-quality models, enabling users to perform anticancer drug discovery-related tasks including large-scale virtual screening, profiling prediction of anticancer agents, target fishing, and drug repositioning. We anticipate this platform to accelerate the discovery of anticancer drugs in the field. DeepCancerMap is freely available at https://deepcancermap.idruglab.cn.


Assuntos
Antineoplásicos , Aprendizado Profundo , Descoberta de Drogas/métodos , Antineoplásicos/farmacologia , Aprendizado de Máquina , Linhagem Celular Tumoral
2.
Front Pharmacol ; 14: 1099093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101544

RESUMO

Cytochrome P450 (CYP) is a superfamily of heme-containing oxidizing enzymes involved in the metabolism of a wide range of medicines, xenobiotics, and endogenous compounds. Five of the CYPs (1A2, 2C9, 2C19, 2D6, and 3A4) are responsible for metabolizing the vast majority of approved drugs. Adverse drug-drug interactions, many of which are mediated by CYPs, are one of the important causes for the premature termination of drug development and drug withdrawal from the market. In this work, we reported in silicon classification models to predict the inhibitory activity of molecules against these five CYP isoforms using our recently developed FP-GNN deep learning method. The evaluation results showed that, to the best of our knowledge, the multi-task FP-GNN model achieved the best predictive performance with the highest average AUC (0.905), F1 (0.779), BA (0.819), and MCC (0.647) values for the test sets, even compared to advanced machine learning, deep learning, and existing models. Y-scrambling testing confirmed that the results of the multi-task FP-GNN model were not attributed to chance correlation. Furthermore, the interpretability of the multi-task FP-GNN model enables the discovery of critical structural fragments associated with CYPs inhibition. Finally, an online webserver called DEEPCYPs and its local version software were created based on the optimal multi-task FP-GNN model to detect whether compounds bear potential inhibitory activity against CYPs, thereby promoting the prediction of drug-drug interactions in clinical practice and could be used to rule out inappropriate compounds in the early stages of drug discovery and/or identify new CYPs inhibitors.

3.
Front Pharmacol ; 13: 971369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304149

RESUMO

PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors.

4.
Bioorg Med Chem ; 72: 116994, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087428

RESUMO

Cyclin-dependent kinase 9 (CDK9) plays a vital role in controlling cell transcription and has been an attractive target for cancer treatment. Herein, ten predictive models derived from 1330 unique molecules against CDK9 were constructed based on molecular fingerprints and graphs using two conventional machine learning and four deep learning methods. The evaluation results showed that FP-GNN deep learning architecture performed best for CDK9 inhibitors prediction with the highest BA and F1 values of 0.681 and 0.912 for testing set. We then performed virtual screening to identify new CDK9 inhibitors by incorporating the optimal established predictive model and molecular docking. Five compounds were identified to show broad anticancer activity against various cancer cell lines through bioassays. For example, C9 exhibited antiproliferative activities against HeLa, MOLM-13 and MDA-MB-231 with IC50 values of 2.53, 3.92 and 11.65 µM. Kinase inhibition assay results demonstrated that these compounds displayed submicromolar (214 âˆ¼ 504 nM) inhibitory activities against CDK9. Further cellular mechanism evaluation revealed that C9 suppressed the activity of CDK9 and interfered with the expression of Mcl-1 and cleaved PARP in MOLM-13 cells, resulting in the induction of cellular apoptosis. In addition, C9 displayed a good stability in rat liver microsomes, artificial gastrointestinal fluid and plasm. An online platform (called DEEPCDK9Pred) was developed based on the FP-GNN models to predict or design new CDK9 inhibitors. Collectively, our findings demonstrated that FP-GNN algorithm can achieve accurate prediction of CDK9 inhibitors and the subsequent discovery of C9 as a new potential CDK9 inhibitor deserves further structural modification for the treatment of leukemia.


Assuntos
Antineoplásicos , Leucemia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina , Ligantes , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ratos
5.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36124766

RESUMO

Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties.


Assuntos
Aprendizado Profundo , Descoberta de Drogas/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Algoritmos
6.
Front Pharmacol ; 13: 901513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707400

RESUMO

[This corrects the article DOI: 10.3389/fphar.2021.796534.].

7.
Front Pharmacol ; 12: 796534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975493

RESUMO

Breast cancer (BC) has surpassed lung cancer as the most frequently occurring cancer, and it is the leading cause of cancer-related death in women. Therefore, there is an urgent need to discover or design new drug candidates for BC treatment. In this study, we first collected a series of structurally diverse datasets consisting of 33,757 active and 21,152 inactive compounds for 13 breast cancer cell lines and one normal breast cell line commonly used in in vitro antiproliferative assays. Predictive models were then developed using five conventional machine learning algorithms, including naïve Bayesian, support vector machine, k-Nearest Neighbors, random forest, and extreme gradient boosting, as well as five deep learning algorithms, including deep neural networks, graph convolutional networks, graph attention network, message passing neural networks, and Attentive FP. A total of 476 single models and 112 fusion models were constructed based on three types of molecular representations including molecular descriptors, fingerprints, and graphs. The evaluation results demonstrate that the best model for each BC cell subtype can achieve high predictive accuracy for the test sets with AUC values of 0.689-0.993. Moreover, important structural fragments related to BC cell inhibition were identified and interpreted. To facilitate the use of the model, an online webserver called ChemBC (http://chembc.idruglab.cn/) and its local version software (https://github.com/idruglab/ChemBC) were developed to predict whether compounds have potential inhibitory activity against BC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...