Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 149(13): 134314, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292228

RESUMO

Studies of exciton and hole stabilization in multichromophoric systems underpin our understanding of electron transfer and transport in materials and biomolecules. The simplest model systems are dimeric, and recently we compared the gas-phase spectroscopy and dynamics of van der Waals dimers of fluorene, 9-methylfluorene (MF), and 9,9'-dimethylfluorene (F1) to assess how sterically controlled facial encumbrance modulates the dynamics of excimer formation and charge resonance stabilization (CRS). Dimers of fluorene and MF show only excimer emission upon electronic excitation, and significant CRS as evidenced in a reduced ionization potential for the dimer relative the monomer. By contrast, the dimer of F1 shows no excimeric emission, rather structured emission from the locally excited state of a tilted (non π-stacked) dimer, evidencing the importance of C-H/π interactions and increased steric constraints that restrict a cofacial approach. In this work, we report our full results on van der Waals clusters of F1, using a combination of theory and experiments that include laser-induced fluorescence, mass-selected two-color resonant two-photon ionization spectroscopy, and two-color appearance potential measurements. We use the latter to derive the binding energies of the F1 dimer in ground, excited, and cation radical states. Our results are compared with van der Waals and covalently linked clusters of fluorene to assess both the relative strength of π-stacking and C-H/π interactions in polyaromatic assemblies and the role of π-stacking in excimer formation and CRS.

2.
Angew Chem Int Ed Engl ; 57(27): 8189-8193, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29733488

RESUMO

Exciton and charge delocalization across π-stacked assemblies is of importance in biological systems and functional polymeric materials. To examine the requirements for exciton and hole stabilization, cofacial bifluorene (F2) torsionomers were designed, synthesized, and characterized: unhindered (model) Me F2, sterically hindered tBu F2, and cyclophane-like C F2, where fluorenes are locked in a perfect sandwich orientation via two methylene linkers. This set of bichromophores with varied torsional rigidity and orbital overlap shows that exciton stabilization requires a perfect sandwich-like arrangement, as seen by strong excimeric-like emission only in C F2 and Me F2. In contrast, hole delocalization is less geometrically restrictive and occurs even in sterically hindered tBu F2, as judged by 160 mV hole stabilization and a near-IR band in the spectrum of its cation radical. These findings underscore the diverse requirements for charge and energy delocalization across π-stacked assemblies.


Assuntos
Fluorenos/química , Técnicas Eletroquímicas , Espectrometria de Fluorescência , Termodinâmica
3.
J Phys Chem Lett ; 9(8): 2058-2061, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29630843

RESUMO

π-Stacking interactions are ubiquitious across chemistry and biochemistry, impacting areas from organic materials and photovoltaics to biochemistry and DNA. However, experimental data is lacking regarding the strength of π-stacking forces-an issue not settled even for the simplest model system, the isolated benzene dimer. Here, we use two-color appearance potential measurements to determine the binding energies of the isolated, π-stacked dimer of fluorene (C13H10) in ground, excited, and ionic states. Our measurements provide the first precise values for π-stacking interaction energies in these states, which are key benchmarks for theory. Indeed, theoretical predictions using ab initio and carefully benchmarked DFT methods are in excellent agreement with experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...