Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5902, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003266

RESUMO

Analogous of pixels to two-dimensional pictures, voxels-in the form of either small cubes or spheres-are the basic building blocks of three-dimensional objects. However, precise manipulation of viscoelastic bio-ink voxels in three-dimensional space represents a grand challenge in both soft matter science and biomanufacturing. Here, we present a voxelated bioprinting technology that enables the digital assembly of interpenetrating double-network hydrogel droplets made of polyacrylamide/alginate-based or hyaluronic acid/alginate-based polymers. The hydrogels are crosslinked via additive-free and biofriendly click reaction between a pair of stoichiometrically matched polymers carrying norbornene and tetrazine groups, respectively. We develop theoretical frameworks to describe the crosslinking kinetics and stiffness of the hydrogels, and construct a diagram-of-state to delineate their mechanical properties. Multi-channel print nozzles are developed to allow on-demand mixing of highly viscoelastic bio-inks without significantly impairing cell viability. Further, we showcase the distinctive capability of voxelated bioprinting by creating highly complex three-dimensional structures such as a hollow sphere composed of interconnected yet distinguishable hydrogel particles. Finally, we validate the cytocompatibility and in vivo stability of the printed double-network scaffolds through cell encapsulation and animal transplantation.


Assuntos
Resinas Acrílicas , Alginatos , Bioimpressão , Ácido Hialurônico , Hidrogéis , Bioimpressão/métodos , Hidrogéis/química , Alginatos/química , Animais , Ácido Hialurônico/química , Resinas Acrílicas/química , Camundongos , Tinta , Impressão Tridimensional , Humanos , Engenharia Tecidual/métodos , Sobrevivência Celular , Materiais Biocompatíveis/química
2.
ACS Nano ; 18(27): 17586-17599, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38932624

RESUMO

Pulmonary drug delivery is critical for the treatment of respiratory diseases. However, the human airway surface presents multiple barriers to efficient drug delivery. Here, we report a bottlebrush poly(ethylene glycol) (PEG-BB) nanocarrier that can translocate across all barriers within the human airway surface. Guided by a molecular theory, we design a PEG-BB molecule consisting of a linear backbone densely grafted by many (∼1000) low molecular weight (∼1000 g/mol) polyethylene glycol (PEG) chains; this results in a highly anisotropic, wormlike nanocarrier featuring a contour length of ∼250 nm, a cross-section of ∼20 nm, and a hydrodynamic diameter of ∼40 nm. Using the classic air-liquid-interface culture system to recapitulate essential biological features of the human airway surface, we show that PEG-BB rapidly penetrates through endogenous airway mucus and periciliary brush layer (mesh size of 20-40 nm) to be internalized by cells across the whole epithelium. By quantifying the cellular uptake of polymeric carriers of various molecular architectures and manipulating cell proliferation and endocytosis pathways, we show that the translocation of PEG-BB across the epithelium is driven by bottlebrush architecture-enhanced endocytosis. Our results demonstrate that large, wormlike bottlebrush PEG polymers, if properly designed, can be used as a carrier for pulmonary and mucosal drug delivery.


Assuntos
Portadores de Fármacos , Endocitose , Polietilenoglicóis , Humanos , Polietilenoglicóis/química , Portadores de Fármacos/química , Nanopartículas/química , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Tamanho da Partícula , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos
3.
ACS Polym Au ; 4(2): 98-108, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618003

RESUMO

Three-dimensional (3D) printing of elastomers enables the fabrication of many technologically important structures and devices. However, there remains a critical need for the development of reprocessable, solvent-free, soft elastomers that can be printed without the need for post-treatment. Herein, we report modular soft elastomers suitable for direct ink writing (DIW) printing by physically cross-linking associative polymers with a high fraction of reversible bonds. We designed and synthesized linear-associative-linear (LAL) triblock copolymers; the middle block is an associative polymer carrying amide groups that form double hydrogen bonding, and the end blocks aggregate to hard glassy domains that effectively act as physical cross-links. The amide groups do not aggregate to nanoscale clusters and only slow down polymer dynamics without changing the shape of the linear viscoelastic spectra; this enables molecular control over energy dissipation by varying the fraction of the associative groups. Increasing the volume fraction of the end linear blocks increases the network stiffness by more than 100 times without significantly compromising the extensibility. We created elastomers with Young's moduli ranging from 8 kPa to 8 MPa while maintaining the tensile breaking strain around 150%. Using a high-temperature DIW printing platform, we transformed our elastomers to complex, highly deformable 3D structures without involving any solvent or post-print processing. Our elastomers represent the softest melt reprocessable materials for DIW printing. The developed LAL polymers synergize emerging homogeneous associative polymers with a high fraction of reversible bonds and classical block copolymer self-assembly to form a dual-cross-linked network, providing a versatile platform for the modular design and development of soft melt reprocessable elastomeric materials for practical applications.

4.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405944

RESUMO

Pulmonary drug delivery is critical to the treatment of respiratory diseases. However, the human airway surface presents multiscale barriers to efficient drug delivery. Here we report a bottlebrush polyethylene glycol (PEG-BB) nanocarrier that can translocate across all barriers within the human airway surface. Guided by the molecular theory, we design a PEG-BB molecule consisting of a linear backbone densely grafted by many (∼1,000) low molecular weight (∼1000 g/mol) PEG chains; this results in a highly anisotropic, wormlike nanocarrier featuring a contour length of ∼250 nm, a cross-section of ∼20 nm, and a hydrodynamic diameter of ∼40 nm. Using the classic air-liquid-interface culture system to recapitulate essential biological features of the human airway surface, we show that PEG-BB rapidly penetrates through endogenous airway mucus and periciliary brush layer (mesh size of 20-40 nm) to be internalized by cells across the whole epithelium. By quantifying the cellular uptake of polymeric carriers of various molecular architectures and manipulating cell proliferation and endocytosis pathways, we show that the translocation of PEG-BB across the epithelium is driven by bottlebrush architecture enhanced endocytosis. Our results demonstrate that large, wormlike bottlebrush PEG polymers, if properly designed, can be used as a novel carrier for pulmonary and mucosal drug delivery.

5.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L292-L302, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252871

RESUMO

Since its invention in the late 1980s, the air-liquid-interface (ALI) culture system has been the standard in vitro model for studying human airway biology and pulmonary diseases. However, in a conventional ALI system, cells are cultured on a porous plastic membrane that is much stiffer than human airway tissues. Here, we develop a gel-ALI culture system by simply coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We determine the optimum gel thickness that does not impair the transport of nutrients and biomolecules essential to cell growth. We show that the gel-ALI system allows human bronchial epithelial cells (HBECs) to proliferate and differentiate into pseudostratified epithelium. Furthermore, we discover that HBECs migrate significantly faster on hydrogel substrates with stiffness matching that of fibrotic lung tissues, highlighting the importance of mechanical cues in human airway remodeling. The developed gel-ALI system provides a facile approach to studying the effects of mechanical cues in human airway biology and in modeling pulmonary diseases.NEW & NOTEWORTHY In a conventional ALI system, cells are cultured on a plastic membrane that is much stiffer than human airway tissues. We develop a gel-ALI system by coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We discover that human bronchial epithelial cells migrate significantly faster on hydrogel substrates with pathological stiffness, highlighting the importance of mechanical cues in human airway remodeling.


Assuntos
Remodelação das Vias Aéreas , Pneumopatias , Humanos , Células Epiteliais , Pulmão , Hidrogéis , Células Cultivadas
6.
Phys Rev Lett ; 130(22): 228101, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327427

RESUMO

An associative polymer carries many stickers that can form reversible associations. For more than 30 years, the understanding has been that reversible associations change the shape of linear viscoelastic spectra by adding a rubbery plateau in the intermediate frequency range, at which associations have not yet relaxed and thus effectively act as crosslinks. Here, we design and synthesize new classes of unentangled associative polymers carrying unprecedentedly high fractions of stickers, up to eight per Kuhn segment, that can form strong pairwise hydrogen bonding of ∼20k_{B}T without microphase separation. We experimentally show that reversible bonds significantly slow down the polymer dynamics but nearly do not change the shape of linear viscoelastic spectra. This behavior can be explained by a renormalized Rouse model that highlights an unexpected influence of reversible bonds on the structural relaxation of associative polymers.


Assuntos
Polímeros , Polímeros/química , Ligação de Hidrogênio
7.
Nat Commun ; 13(1): 2919, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614105

RESUMO

Genetically encoded fluorescent biosensors are powerful tools used to track chemical processes in intact biological systems. However, the development and optimization of biosensors remains a challenging and labor-intensive process, primarily due to technical limitations of methods for screening candidate biosensors. Here we describe a screening modality that combines droplet microfluidics and automated fluorescence imaging to provide an order of magnitude increase in screening throughput. Moreover, unlike current techniques that are limited to screening for a single biosensor feature at a time (e.g. brightness), our method enables evaluation of multiple features (e.g. contrast, affinity, specificity) in parallel. Because biosensor features can covary, this capability is essential for rapid optimization. We use this system to generate a high-performance biosensor for lactate that can be used to quantify intracellular lactate concentrations. This biosensor, named LiLac, constitutes a significant advance in metabolite sensing and demonstrates the power of our screening approach.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Corantes , Lactatos , Microfluídica
8.
Phys Rev Lett ; 127(10): 108101, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533352

RESUMO

We investigate the rheological properties of interpenetrating networks reconstituted from the main cytoskeletal components: filamentous actin, microtubules, and vimentin intermediate filaments. The elastic modulus is determined largely by actin, with little contribution from either microtubules or vimentin. However, vimentin dramatically impacts the relaxation, with even small amounts significantly increasing the relaxation time of the interpenetrating network. This highly unusual decoupling between dissipation and elasticity may reflect weak attractive interactions between vimentin and actin networks.


Assuntos
Filamentos Intermediários/química , Modelos Químicos , Vimentina/química , Actinas/química , Actinas/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Células Eucarióticas , Filamentos Intermediários/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Reologia/métodos , Vimentina/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649231

RESUMO

Fibrin is the main component of blood clots. The mechanical properties of fibrin are therefore of critical importance in successful hemostasis. One of the divalent cations released by platelets during hemostasis is Zn2+; however, its effect on the network structure of fibrin gels and on the resultant mechanical properties remains poorly understood. Here, by combining mechanical measurements with three-dimensional confocal microscopy imaging, we show that Zn2+ can tune the fibrin network structure and alter its mechanical properties. In the presence of Zn2+, fibrin protofibrils form large bundles that cause a coarsening of the fibrin network due to an increase in fiber diameter and reduction of the total fiber length. We further show that the protofibrils in these bundles are loosely coupled to one another, which results in a decrease of the elastic modulus with increasing Zn2+ concentrations. We explore the elastic properties of these networks at both low and high stress: At low stress, the elasticity originates from pulling the thermal slack out of the network, and this is consistent with the thermal bending of the fibers. By contrast, at high stress, the elasticity exhibits a common master curve consistent with the stretching of individual protofibrils. These results show that the mechanics of a fibrin network are closely correlated with its microscopic structure and inform our understanding of the structure and physical mechanisms leading to defective or excessive clot stiffness.


Assuntos
Módulo de Elasticidade , Fibrina/química , Zinco/química , Fibrina/metabolismo , Humanos , Reologia , Zinco/metabolismo
10.
Soft Matter ; 16(27): 6259-6264, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32667000

RESUMO

Networks formed by crosslinking bottlebrush polymers are a class of soft materials with stiffnesses matching that of 'watery' hydrogels and biological tissues but contain no solvents. Because of their extreme softness, bottlebrush polymer networks are often subject to large deformations. However, it is poorly understood how molecular architecture determines the extensibility of the networks. Using a combination of experimental and theoretical approaches, we discover that the yield strain γy of the network equals the ratio of the contour length Lmax to the end-to-end distance R of the bottlebrush between two neighboring crosslinks: γy = Lmax/R- 1. This relation suggests two regimes: (1) for stiff bottlebrush polymers, γy is inversely proportional to the network shear modulus G, γy∼G-1, which represents a previously unrecognized regime; (2) for flexible bottlebrush polymers, γy∼G-1/2, which recovers the behavior of conventional polymer networks. Our findings provide a new molecular understanding of the nonlinear mechanics for soft bottlebrush polymer networks.

11.
Langmuir ; 35(13): 4693-4701, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30840480

RESUMO

The ability to make stable water-in-oil and oil-in-water millimeter-size Pickering emulsions is demonstrated using Janus particles-particles with distinct surface chemistries. The use of a highly cross-linked hydrophobic polymer network and the excellent water-wetting nature of a hydrogel as the hydrophobic and hydrophilic sides, respectively, permit distinct wettability on the Janus particle. Glass capillary microfluidics allows the synthesis of Janus particles with controlled sizes between 128 and 440 µm and control over the hydrophilic-to-hydrophobic domain volume ratio of the particle from 0.36 to 12.77 for a given size. It is shown that the Janus particle size controls the size of the emulsion drops, thus providing the ability to tune the structure and stability of the resulting emulsions. Stability investigations using centrifugation reveal that particles with the smallest size and a balanced hydrophilic-to-hydrophobic volume ratio (Janus ratio) form emulsions with the greatest stability against coalescence. Particles eventually jam at the interface to form nonspherical droplets. This effect is more pronounced as the hydrogel volume is increased. The large Janus particles permit facile visualization of particle-stabilized emulsions, which result in a better understanding of particle stabilization mechanisms of formed emulsions.

12.
ACS Macro Lett ; 8(11): 1528-1534, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35651182

RESUMO

Linear-bottlebrush-linear (LBBL) triblock copolymers represent an emerging system for creating multifunctional nanostructures. Their self-assembly depends on molecular architecture but remains poorly explored. We synthesize polystyrene-block-bottlebrush polydimethylsiloxane-block-polystyrene triblock copolymers with controlled molecular architecture and use them as a model system to study the self-assembly of LBBL polymers. Unlike classical stiff rod-flexible linear block copolymers that are prone to form highly ordered nanostructures such as lamellae, at small weight fractions of the linear blocks, LBBL polymers self-assemble to a disordered sphere phase, regardless of the bottlebrush stiffness. Microscopically, characteristic lengths increase with the bottlebrush stiffness by a power of 2/3, which is captured by a scaling analysis. Macroscopically, the formed nanostructures are ultrasoft, reprocessable elastomers with shear moduli of about 1 kPa, two orders of magnitude lower than that of conventional polydimethylsiloxane elastomers. Our results provide insights on exploiting the self-assembly of LBBL polymers to create soft functional nanostructures.

13.
Proc Natl Acad Sci U S A ; 115(49): 12501-12506, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420506

RESUMO

Clearance of intrapulmonary mucus by the high-velocity airflow generated by cough is the major rescue clearance mechanism in subjects with mucoobstructive diseases and failed cilial-dependent mucus clearance, e.g., subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Previous studies have investigated the mechanical forces generated at airway surfaces by cough but have not considered the effects of mucus biophysical properties on cough efficacy. Theoretically, mucus can be cleared by cough from the lung by an adhesive failure, i.e., breaking mucus-cell surface adhesive bonds and/or by cohesive failure, i.e., directly fracturing mucus. Utilizing peel-testing technologies, mucus-epithelial surface adhesive and mucus cohesive strengths were measured. Because both mucus concentration and pH have been reported to alter mucus biophysical properties in disease, the effects of mucus concentration and pH on adhesion and cohesion were compared. Both adhesive and cohesive strengths depended on mucus concentration, but neither on physiologically relevant changes in pH nor bicarbonate concentration. Mucus from bronchial epithelial cultures and patient sputum samples exhibited similar adhesive and cohesive properties. Notably, the magnitudes of both adhesive and cohesive strength exhibited similar velocity and concentration dependencies, suggesting that viscous dissipation of energy within mucus during cough determines the efficiency of cough clearance of diseased, hyperconcentrated, mucus. Calculations of airflow-induced shear forces on airway mucus related to mucus concentration predicted substantially reduced cough clearance in small versus large airways. Studies designed to improve cough clearance in subjects with mucoobstructive diseases identified reductions of mucus concentration and viscous dissipation as key therapeutic strategies.


Assuntos
Tosse/patologia , Muco/fisiologia , Bicarbonatos , Adesão Celular , Fibrose Cística , Células Epiteliais , Humanos , Concentração de Íons de Hidrogênio , Pneumopatias , Depuração Mucociliar/fisiologia , Muco/química , Fenômenos Fisiológicos Respiratórios , Reologia , Escarro
14.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28799236

RESUMO

Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm-2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage.

15.
Angew Chem Int Ed Engl ; 55(43): 13470-13474, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27717141

RESUMO

We report a microfluidic approach for one-step fabrication of polyelectrolyte microcapsules in aqueous conditions. Using two immiscible aqueous polymer solutions, we generate transient water-in-water-in-water double emulsion droplets and use them as templates to fabricate polyelectrolyte microcapsules. The capsule shell is formed by the complexation of oppositely charged polyelectrolytes at the immiscible interface. We find that attractive electrostatic interactions can significantly prolong the release of charged molecules. Moreover, we demonstrate the application of these microcapsules in encapsulation and release of proteins without impairing their biological activities. Our platform should benefit a wide range of applications that require encapsulation and sustained release of molecules in aqueous environments.


Assuntos
Fluoresceína/química , Técnicas Analíticas Microfluídicas , Polieletrólitos/química , Estreptavidina/química , Cápsulas/química , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Água/química
17.
Adv Mater ; 27(35): 5132-40, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26259975

RESUMO

Soft, solvent-free poly(dimethylsiloxane) elastomers are fabricated by a one-step process via crosslinking bottlebrush polymers. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable low moduli from 1 to 100 kPa, below the lower limit of traditional elastomers; moreover, the solvent-free nature enables their negligible adhesiveness compared to commercially available silicone products of similar stiffness.


Assuntos
Dimetilpolisiloxanos/química , Desenho de Fármacos , Elastômeros/química , Adesividade , Animais , Dimetilpolisiloxanos/farmacologia , Cães , Módulo de Elasticidade , Elastômeros/farmacologia , Células Madin Darby de Rim Canino , Teste de Materiais , Camundongos , Células NIH 3T3
18.
Macromolecules ; 48(3): 847-862, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25691803

RESUMO

We propose a hopping mechanism for diffusion of large nonsticky nanoparticles subjected to topological constraints in both unentangled and entangled polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size ax of unentangled polymer networks or tube diameter ae of entangled polymer liquids are trapped by the network or entanglement cells. At long time scales, however, these particles can diffuse by overcoming free energy barrier between neighboring confinement cells. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size moderately larger than the network mesh size ax or tube diameter ae . Much larger particles in polymer solids will be permanently trapped by local network cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in complex biological gels such as mucus.

19.
J Clin Invest ; 124(7): 3047-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24892808

RESUMO

The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer-dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease.


Assuntos
Fibrose Cística/fisiopatologia , Mucinas/análise , Mucinas/metabolismo , Adulto , Estudos de Casos e Controles , Criança , Cromatografia em Gel , Fibrose Cística/microbiologia , Feminino , Humanos , Imunoensaio , Elastase de Leucócito/metabolismo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Peso Molecular , Mucina-5B/análise , Mucina-5B/metabolismo , Pressão Osmótica , Proteólise , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Reprodutibilidade dos Testes , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia , Sistema Respiratório/patologia , Escarro/química , Adulto Jovem
20.
Macromolecules ; 46(18)2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24347684

RESUMO

Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of unentangled polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess non-equilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...