Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106889, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813074

RESUMO

Most patients with advanced prostate cancer (PCa) will develop metastatic castration-resistant prostate cancer (mCRPC) after androgen deprivation therapy, at this time the tumor enters the end stage, and the clinical treatment is very complicated, which requires rationalization of drugs to prolong the life of patients while improving their quality of life. Prostate-specific membrane antigen (PSMA) is a promising biological target for drug delivery in mCRPC due to its high level of specific expression in PCa cell membranes and low expression in normal tissues. Non-radioactive PSMA-targeted small molecule-drug conjugates (SMDCs) are gradually becoming a heat of discovery due to their good affinity and specificity; simple synthesis steps and transport management methods. Non-radioactive PSMA-targeted SMDCs under investigation can be divided into two categories: SMDCs and dual-ligand coupled drugs, among which SMDCs are the most widespread form of this type of conjugate. SMDCs have three key components: cytotoxic load, linker, and small molecule targeting ligands. SMDCs are internalized into the cell after binding to PSMA on the cell membrane and stored in endosomes and lysosomes, where they are usually enzymatically cleaved to allow precise release of cytotoxic molecules and uniform diffusion into the tumor tissue. More than a dozen non-radioactive PSMA-targeted SMDCs have been developed, many of which have shown favorable properties in both in vitro and in vivo evaluations, demonstrating more favorable results than unmodified cytotoxic drugs. Therefore, non-radioactive PSMA-targeted SMDCs have great therapeutic potential for mCRPC as a form of targeted therapy.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Androgênios , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Qualidade de Vida
2.
Materials (Basel) ; 16(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895802

RESUMO

As the demand for the development and utilization of marine resources continues to strengthen, the service requirements for advanced marine equipment are rapidly increasing. Surface protection technology has become an important way of solving the tribological problems of extreme operating conditions and improving the safety performance of equipment by imparting certain special properties to the surface of the material through physical, chemical or mechanical processes to enhance the ability of the material to withstand external environmental factors. Combined with the extremely complex characteristics of the marine environment, this paper describes the commonly used surface protection technologies for metal materials in the marine environment. Research on surface texture was summarized under different surface reshaping technologies, as well as processes and coating materials under different surface modification technologies. Combined with the existing research progress and development trends of marine metallic materials, the surfaces of metal materials under the marine environment protection technology foreground are prospected and provide a reference for the improvement of equipment performance in extreme marine environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...