Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701991

RESUMO

Excess utilization of plant protein sources in animal feed has been found to adversely affect the antioxidant properties and immunity of animals. While the role of gut microbes in plant protein-induced inflammation has been identified in various models, the specific mechanisms regulating gut microbes in crustaceans remain unclear. Accordingly, this study was designed to investigate the effects of replacing fishmeal with soybean meal (SM) on the hepatopancreas antioxidant and immune capacities, and gut microbial functions of crayfish, as well as the potential microbial regulatory mechanisms. 750 crayfish (4.00 g) were randomly divided into five groups: SS0, SS25, SS50, SS75, and SS100, and fed diets with different levels of soybean meal substituted for fishmeal for six weeks. High SM supplementation proved detrimental to maintaining hepatopancreas health, as indicated by an increase in hemolymph MDA content, GPT, and GOT activities, the observed rupture of hepatopancreas cell basement membranes, along with the decreased number of hepatopancreatic F cells. Moreover, crayfish subjected to high SM diets experienced obvious inflammation in hepatopancreas, together with up-regulated mRNA expression levels of nfkb, alf, and tlr (p<0.05), whereas the lzm mRNA expression level exhibited the highest value in the SS25 group. Furthermore, hepatopancreas antioxidant properties highly attenuated by the level of dietary SM substitution levels, as evidenced by the observed increase in MDA content (p<0.05), decrease in GSH content (p<0.05), and inhabitation of SOD, CAT, GPx, and GST activities (p<0.05), along with down-regulated hepatopancreas cat, gpx, gst, and mmnsod mRNA expression levels via inhibiting nrf2/keap1 pathway. Functional genes contributing to metabolism identified that high SM diets feeding significantly activated lipopolysaccharide biosynthesis, revealing gut dysfunction acted as the cause of inflammation. The global microbial co-occurrence network further indicated that the microbes contributing more to serum indicators and immunity were in module eigengene 17 (ME17). A structural equation model revealed that the genes related to alf directly drove the serum enzyme activities through microbes in ME17, with OTU399 and OTU533 identified as major biomarkers and classified into Proteobacteria that secrete endotoxins. To conclude, SM could replace 25 % of fishmeal in crayfish diets without negatively affecting immunity, and antioxidant capacity. Excessive SM levels contributed to gut dysfunction and weakened the innate immune system of crayfish.


Assuntos
Ração Animal , Antioxidantes , Astacoidea , Dieta , Microbioma Gastrointestinal , Glycine max , Hepatopâncreas , Animais , Astacoidea/imunologia , Astacoidea/genética , Ração Animal/análise , Glycine max/química , Antioxidantes/metabolismo , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Imunidade Inata/efeitos dos fármacos , Distribuição Aleatória , Intestinos/imunologia , Intestinos/efeitos dos fármacos , Suplementos Nutricionais/análise
2.
Animals (Basel) ; 13(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508052

RESUMO

Chlorella vulgaris (C. vulgaris) powder is a novel non-grain single-cell protein with enormous potential to be a protein source. However, it is poorly studied in aquatic animals. The purpose of the present study was to explore the optimum replacement ratio of C. vulgaris powder and the influence of the substitution of soybean meal with C. vulgaris on grass carp (Ctenopharyngodon idella) in terms of growth performance, intestinal integrity and the microbial community. Five isonitrogenous and isolipidic diets were formulated by replacing 0% (SM, containing 30% soybean meal), 25% (X25), 50% (X50), 75% (X75) and 100% (X100) soybean meal with C. vulgaris. The feeding trial period lasted 8 weeks. At the end of the experimental trial, the X50 group showed higher FW, WGR and PER than the SM group (p < 0.05). The feed conversion ratio (FCR) of the X50 group was significantly lower than that of the SM group (p < 0.05). The X50 group showed the highest value of the goblet cell number, intestinal amylase and trypsin activities when compared with the SM group (p < 0.05). Replacing 50% soybean meal with C. vulgaris improved the intestinal barrier integrity, as evidenced by upregulating zo-1, zo-2 and occluding transcript (p < 0.05), and alleviated oxidative stress by an increased SOD enzymatic activity and transcript level, probably mediated through the Nrf2-keap1 signaling pathway (p < 0.05). Meanwhile, the X50 group enhanced intestinal immunity, as manifested by increased ACP and LZM activities (p < 0.05), and downregulated the tlr-4, tlr-7, tlr-8 and il-6 through the tlr pathway (p < 0.05). The functionally predicting pathways related to the nitrate respiration and nitrogen respiration were observably activated in the X50 group (p < 0.05). The X50 group improved the biological barrier, as manifested by increased Firmicutes and Rhodobacter (p < 0.05). In conclusion, dietary C. vulgaris powder could promote the growth performance of grass carp by restoring intestinal morphology, increasing digestive enzyme activities, improving antioxidant properties and immunity and optimizing the microflora structure. A C. vulgaris powder replacement of 50% soybean meal was recommended as feed for grass carp.

3.
Aquac Nutr ; 2023: 5533414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967810

RESUMO

An eight-week feeding trial explored the mechanism that supplemented methionine (0 g/kg, 4 g/kg, 8 g/kg, and 12 g/kg) in a high-fat diet (120 g/kg fat) on intestinal lipid transportation and gut microbiota of M. Albus (initial weight 25.03 ± 0.13 g) based on the diet (60 g/kg fat), named as Con, HFD+M0, HFD+M4, HFD+M8, and HFD+M12, respectively. Compared with Con, gastric amylase, lipase, trypsin (P < 0.05), and intestinal lipase, amylase, trypsin, Na+/K+ -Adenosinetriphosphatase, depth of gastric fovea, and the number of intestinal villus goblet cells of HFD+M0 were markedly declined (P < 0.05), while intestinal high-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol and microsomal triglyceride transfer protein of HFD+M0 were markedly enhanced (P < 0.05); compared with HFD+M0, gastric lipase, amylase, trypsin, and intestinal lipase, trypsin, Na+/K+ -Adenosinetriphosphatase, microsomal triglyceride transfer protein, very low-density lipoprotein-cholesterol, and apolipoprotein -A, the height of intestinal villus and the number of intestinal villus goblet cells of HFD+M8 were remarkably enhanced (P < 0.05). Compared with Con, intestinal occ, cl12, cl15, zo-1, zo-2 of HFD + M0 were markedly down-regulated (P <0.05), while intestinal vldlr, npc1l1, cd36, fatp1, fatp2, fatp6, fatp7, apo, apoa, apob, apof, apoo, mct1, mct2, mct4, mct7, mct12, lpl, mttp, moat2, dgat2 of HFD M0 were remarkably upregulated (P < 0.05); compared with HFD+M0, intestinal gcn2 and eif2α of HFD+M8 were remarkably downregulated (P < 0.05), intestinal occ, cl12, cl15, zo-1, zo-2, hdlbp, ldlrap, vldlr, cd36, fatp1, fatp2, fatp6, apo, apoa, apob, apof, apoo, mct1, mct2, mct8, mct12, lpl, mttp, moat2, and dgat2 were remarkably upregulated (P < 0.05). Compared with Con, the diversity of gut microbiota of HFD+M0 was significantly declined (P < 0.05), while the diversity of gut microbiota in HFD+M8 was significantly higher than that in HFD+M0 (P < 0.05). In conclusion, a high-fat methionine deficiency diet destroyed the intestinal barrier, reduced the capacity of intestinal digestion and absorption, and disrupted the balance of gut microbiota; supplemented methionine promoted the digestion and absorption of lipids, and also improved the balance of gut microbiota.

4.
Br J Nutr ; 130(4): 604-615, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36373572

RESUMO

As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.


Assuntos
Aminoácidos de Cadeia Ramificada , Percas , Animais , Músculo Esquelético/metabolismo , Ritmo Circadiano/fisiologia , Jejum
5.
Front Microbiol ; 13: 917051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875587

RESUMO

An 8-week feeding trial was conducted using the rice field eel (Monopterus albus) with six isonitrogenous and isoenergetic experimental diets of basic feed supplemented with different levels of methionine (0, 2, 4, 6, 8, or 10 g/kg). This study built upon previous research findings that showed dietary methionine restriction (M0, 0 g/kg) inhibited hepatic fatty acid metabolism and intestinal fatty acid transportation, but both are improved by dietary supplementation with a suitable level of methionine (M8, 8 g/kg). Hence, M0 and M8 were selected to investigate how methionine regulates the gut microbiota and lipidomics of M. albus. Compared with M0, values for gut bacterial Sobs, Shannon, ACE, and Chao1 indices of M8 were remarkably increased (p < 0.05), with Fusobacteria, Firmicutes, and Proteobacteria the dominant phyla and Cetobacterium, Plesiomonas, and Bacillus the main genera in the community under the M0 vs. M8 treatments. However, compared with M0, the proportion of phyla consisting of Fusobacteria decreased in M8, as did the Cetobacterium and Lactococcus at the genus level; conversely, the proportions corresponding to Firmicutes, Proteobacteria, and Chioroflexi phyla increased in M8, as did the Clostridium and Streptococcus genera. Many edges appeared in the circus and networks, demonstrating the interspecies interactions among different operational taxonomic units (OTUs). In addition, various OTUs within the same phylum were clustered within one module. Cooperative interactions were predominant in the two networks, while competitive interactions were prevalent in their submodules. Gut microbiota mainly played roles in nutrition (lipid, amino acid, and carbohydrate) transport and metabolism under the M0 vs. M8 treatments. The PLS-DA scores indicated a significant difference in the main lipidomic components between the M0 and M8 treatment groups. Namely, the TG(26:0/16:0/17:0), TG(28:0/16:0/16:0), TG(26:0/16:0/16:0), and TG(30:0/16:0/16:0)-among others-comprising the gut content were reduced under the M8 treatment (p < 0.001). The genus Clostridium was positively correlated with TG(18:1/18:1/22:5), TG(16:0/17:0/18:1), TG(18:0/18:1/20:3), and other compounds, yet negatively correlated with TG(18:0/17:0/20:0), TG(16:0/17:0/24:0), and TG(16:0/16:0/24:0), among others as well. According to the lipidomics analysis, the predicted KEGG pathways mainly included lipid and glycan biosynthesis and metabolism, and digestive, sensory, and immune systems. In conclusion, methionine restriction disturbed the microbial community balance and induced microbial dysfunctions, whereas methionine supplementation improved the homeostasis of gut microbiota and lipid metabolism of the rice eel.

6.
Fish Shellfish Immunol ; 127: 155-165, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716969

RESUMO

The reduction of fishmeal in aquafeeds has been the concern of researchers. Replacing fishmeal with plant proteins affects intestinal function and inflammation, but the interaction between the intestinal responses and gut microbiota remains unclear. In this study, juvenile channel catfish (Ictalurus punctatus) was fed with four diets in which enzymatic rice protein (RP) replaced fishmeal at levels of 0 (FM), 2.5% (RP2.5), 5.0% (RP5.0), and 7.5% (RP7.5) for 8 weeks to solve the problem mentioned above. Quantification of intestinal morphology showed that 2.5% or 5.0% RP significantly increased villus length and goblet cell number, accompanied by higher activities of intestinal trypsin, alkaline phosphatase (AKP), and Na+/K+-ATPase (NKA) in RP2.5 group (P < 0.05). In contrast, 7.5% RP slightly damaged the intestinal mucosa and significantly reduced the activities of amylase, AKP, and NKA, as well as decreased serum complement 4 (C4) and immunoglobulin M (IgM). Noteworthy, RT-qPCR showed that 2.5% RP significantly down-regulated intestinal mRNA expression level of il8, while up-regulated mif, tlr4, tlr7, tgfß3, and cldn2. In contrast, 7.5% RP up-regulated the mRNA expression levels of il1ß, il8, and mif, while down-regulated cldn3d. Analysis of gut microbiota showed that 2.5% RP increased the relative abundance of Bacteroidetes and significantly activated potential functions of gut microbiota involved in carbohydrate metabolism. The 7.5% RP increased the diversity of the gut microbiota, accompanied by a significant increase in the relative abundance of conditionally pathogenic bacteria such as Vibrio, Serratia, and Aeromonas (classified as Proteobacteria). Notably, Vibrio was the biomarker species with the greatest difference between the FM and RP7.5 groups (genus level). Correlation analysis indicated that Vibrio may affect immunity through the C4 pathway and further lead to gut inflammation and digestive impairment. Taken above, these results indicated that RP could affect intestinal morphology, digestion, and inflammation, and interact with the composition and potential function of gut microbiota. The low RP supplement (2.5%) improved intestinal morphology and digestion, while high supplement (7.5%) disrupted gut microbiota homeostasis, resulting in damage to intestinal mucosa and inflammatory response.


Assuntos
Microbioma Gastrointestinal , Ictaluridae , Oryza , Ração Animal/análise , Animais , Dieta/veterinária , Proteínas Alimentares , Digestão , Ictaluridae/genética , Inflamação/veterinária , Interleucina-8 , RNA Mensageiro
7.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948174

RESUMO

Methionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg) (p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase, apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However, in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1 and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under methionine restriction.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Metionina/farmacologia , Smegmamorpha/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , China , Dieta , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Metionina/deficiência , Metionina/metabolismo , RNA Mensageiro/metabolismo , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...