Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1424259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007147

RESUMO

Introduction: Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified. Methods: The gene expression profiles datasets of TNBC patients were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Diagnostic biomarkers for stratifying individualized tumor immune microenvironment (TIME) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with response to immunotherapy via the multiplex immunohistochemistry (mIHC). Results: A total of 60 costimulatory molecule genes (CMGs) were obtained, and we determined two different TIME subclasses ("hot" and "cold") through the K-means clustering method. The "hot" tumors presented a higher infiltration of activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1 macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs (CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel diagnostic nomogram was constructed for predicting individualized TIME status and was validated with good predictive accuracy in TCGA, GSE76250 and GSE58812 databases. Further mIHC conformed that TNBC patients with high CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy. Conclusion: This study supplemented evidence about the value of CMGs in TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential biomarkers, significantly promoting TNBC patient selection for immunotherapeutic guidance.


Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Microambiente Tumoral/imunologia , Feminino , Algoritmos , Perfilação da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Imunoterapia , Transcriptoma
2.
Ren Fail ; 44(1): 1169-1181, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35837696

RESUMO

Acute kidney injury (AKI) is a serious condition with high mortality. The most common cause is kidney ischemia/reperfusion (IR) injury, which is thought to be closely related to pyroptosis. Disulfiram is a well-known alcohol abuse drug, and recent studies have shown its ability to mitigate pyroptosis in mouse macrophages. This study investigated whether disulfiram could improve IR-induced AKI and elucidated the possible molecular mechanism. We generated an IR model in mouse kidneys and a hypoxia/reoxygenation (HR) injury model with murine tubular epithelial cells (MTECs). The results showed that IR caused renal dysfunction in mice and triggered pyroptosis in renal tubular epithelial cells, and disulfiram improved renal impairment after IR. The expression of proteins associated with the classical pyroptosis pathway (Nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-related specific protein (ASC), caspase-1, N-GSDMD) and nonclassical pyroptosis pathway (caspase-11, N-GSDMD) were upregulated after IR. Disulfiram blocked the upregulation of nonclassical but not all classical pyroptosis pathway proteins (NLRP3 and ASC), suggesting that disulfiram might reduce pyroptosis by inhibiting the caspase-11-GSDMD pathway. In vitro, HR increased intracellular ROS levels, the positive rate of PI staining and LDH levels in MTECs, all of which were reversed by disulfiram pretreatment. Furthermore, we performed a computer simulation of the TIR domain of TLR4 using homology modeling and identified a small molecular binding energy between disulfiram and the TIR domain. We concluded that disulfiram might inhibit pyroptosis by antagonizing TLR4 and inhibiting the caspase-11-GSDMD pathway.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Animais , Caspases/metabolismo , Simulação por Computador , Dissulfiram/farmacologia , Isquemia , Rim/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Receptor 4 Toll-Like
3.
Life Sci ; 263: 118672, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33121990

RESUMO

AIMS: Cisplatin is an anticancer agent marred by nephrotoxicity. Limiting this adverse effect may allow the use of higher doses to improve its efficacy. The Wnt/ß-catenin signaling pathway plays a critical role in nephrogenesis and repair of renal diseases. BIO, a small molecule agonist of this pathway, exerted a protective effect in adriamycin nephropathy and promoted nephrogenesis. The aim of this study, therefore, was to investigate whether Wnt/ß-catenin agonist BIO could protect against cisplatin-induced nephrotoxicity in vivo and in vitro, as well as its possible mechanism. MAIN METHODS: Male mice and human renal proximal tubular cells (HK-2) were subjected to cisplatin to study reno-protective effect of BIO. Renal function, cell viability, tubular apoptosis, production of reactive oxygen species (ROS) and proliferative level were analyzed respectively. Additionally, xenograft model was induced to investigate if BIO would impair the antitumor effect of cisplatin. KEY FINDINGS: Cisplatin increased serum creatinine levels and promoted histological renal injury as well as oxidative stress levels. Besides, renal apoptotic level and the expression of pro-apoptotic proteins, Bax/bcl-2 and cleaved-caspase3 included, in the kidney were increased. All these features were decreased by BIO, which also activated Wnt/ß-catenin pathway in cisplatin-induced nephrotoxicity. Similarly, accompanied by the motivation of Wnt/ß-catenin pathway, BIO exerted a positively protective effect on HK-2 challenged cisplatin. Last, the chemotherapeutic effects of cisplatin in xenograft mice of ovary tumor models and in lung cancer cells weren't compromised by BIO. SIGNIFICANCE: Wnt/ß-catenin agonist BIO has the potential to prevent cisplatin nephrotoxicity without compromising its anti-proliferation efficacy.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Indóis/farmacologia , Nefropatias/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Oximas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Feminino , Humanos , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...