Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 16(5): 1602-1619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883391

RESUMO

BACKGROUND: Cepharanthine, a bioactive constituent of Stephania japonica (Thunb.) Miers, is known for its potent anti-tumor properties. Nevertheless, the precise impact of this substance on bladder cancer remains poorly comprehended. The aim of this study was to demonstrate the effect and mechanism of cepharanthine on the metastasis of human bladder cancer cells. METHODS: The application of network pharmacology was utilized to ascertain the possible targets and signaling pathways of cepharanthine in the treatment of bladder cancer. The antiproliferative effects of cepharanthine were evaluated using Cell Counting Kit-8 and colony formation assays. The migration and invasion capabilities were assessed using Transwell assays and wound healing experiments. Proteins related to the Rap1 signaling pathway, cellular migration, cellular invasion, and Epithelial-Mesenchymal Transition (EMT) were quantified by western blotting. RESULTS: Through database screening, 313 cepharanthine-acting targets, 277 candidate disease targets in bladder cancer, 22 intersecting targets, and 12 core targets were confirmed. The involvement of the Rap1 signaling system was revealed by the Kyoto Encyclopedia of Genes and Genomes' pathway enrichment study. Cepharanthine was shown to decrease bladder cancer cell proliferation, migration, and invasion in vitro. Cepharanthine activated the Rap1 signaling pathway by upregulating Epac1 and downregulating E-cadherin and C3G protein expression, leading to increased expression of Rap1 GTP protein and decreased expression of protein kinase D1 and integrin α5. Rap1 signalling pathway activation resulted in the downregulation of migration and invasion-related proteins, matrix metallopeptidase MMP2, MMP9, as well as EMT-related proteins, N-cadherin and Snail, without affecting vimentin expression. CONCLUSION: Cepharanthine inhibits migration, invasion, and EMT of bladder cancer cells by activating the Rap1 signalling pathway. The results offer helpful insights regarding the possible therapeutic use of cepharanthine for treating bladder cancer.

2.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38793159

RESUMO

This paper presents a dual-band 8-port multiple-input multiple-output (MIMO) antenna specifically designed for fifth-generation (5G) smartphones, featuring two open-slot metal frames. To enhance impedance matching and improve isolation between adjacent antenna elements, each antenna element employed a coupling feed. All simulation results in this paper come from Ansys HFSS. The operational frequency bands of the proposed antenna spanned 3.36-4.2 GHz for the lower band and 4.37-5.95 GHz for the higher band, covering 5G New Radio (NR) bands N78 (3.4-3.6 GHz) and N79 (4.4-4.9 GHz), as well as WiFi 5 (5.15-5.85 GHz). Notably, the antenna demonstrated outstanding isolation exceeding 16.5 dB within the specified operating bands. The exceptional performance positions the proposed antenna as a promising candidate for integration into 5G metal-frame smartphones.

3.
Micromachines (Basel) ; 13(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35056301

RESUMO

A multiple-input-multiple-output (MIMO) antenna array for triple-band 5G metal-frame smartphone applications is proposed in this paper. Each single antenna element consists of an S-shaped feeding strip and an L-shaped radiation strip on the metal frame. The dimension of the antenna element is only 6.5 mm × 7 mm (0.076 λ0 × 0.082 λ0, λ0 is the free-space wavelength at the frequency of 3.5 GHz). The -6 dB impedance bandwidth of the proposed eight-antenna array can cover 3.3-3.8 GHz, 4.8-5 GHz, and 5.15-5.925 GHz. The evolution design and the analysis of the optimal parameters for a single antenna element are derived to investigate the principle of the antenna. The measured total efficiency is larger than 70%. The measured isolation is better than 13 dB. The measurements of the prototype agree well with the simulation results.

4.
Micromachines (Basel) ; 12(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068817

RESUMO

In this paper, a compact planar dual-band multiple-input and multiple-output (MIMO) antenna with high isolation is presented to satisfy the increasing requirements of wireless communication. The proposed antenna array consists of two identical radiating elements which are fed through micro-strip lines. A rectangular micro-strip stub with defected ground plane is employed to achieve a high isolation which is less than -15 dB between the two antenna elements. The size of the entire MIMO antenna is 32 × 32 × 1.59 mm3, which is printed on an FR4 substrate. The proposed MIMO antenna is optimized to operate in 2.36-2.59 GHz and 3.17-3.77 GHz bands, which can cover the fifth-generation (5G) n7 (2.5-2.57 GHz) and the fourth-generation (4G) Long Term Evolution (LTE) band 42 (3.4-3.6 GHz). The proposed MIMO antenna is feasible for the 5G and 4G applications.

5.
Micromachines (Basel) ; 12(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926118

RESUMO

This paper presents a dual-band four-element multiple-input-multiple-output (MIMO) array for the fifth generation (5G) mobile communication. The proposed antenna is composed of an open-loop ring resonator feeding element and a T-shaped radiating element. The utilization of the open-loop ring resonator not only reduces the size of the antenna element, but also provides positive cross-coupling. The dimension of a single antenna element is 14.9 mm × 7 mm (0.27λ × 0.13λ, where λ is the wavelength of 5.5 GHz). The MIMO antenna exhibits a dual-band feature from 3.3 to 3.84 GHz and 4.61 to 5.91 GHz, which can cover 5G New Radio N78 (3.3-3.8 GHz), 5G China Band N79 (4.8-5 GHz), and IEEE 802.11 ac (5.15-5.35 GHz, 5.725-5.85 GHz). The measured total efficiency and isolation are better than 70% and 15 dB, respectively. The calculated envelope correlation coefficient (ECC) is less than 0.02. The measured results are in good agreement with the simulated results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...