Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(22): 35616-35623, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017728

RESUMO

The all-fiber detection solutions are the key technology to detecting hydrogen leakage in time because of the low explosive limit of the hydrogen-air mixture gas. However, most of the fiber-optic-based hydrogen sensing platforms must disrupt their structure to achieve a special architecture for interacting with the hydrogen. Here, we report a promising non-damaged structure of fiber-optic narrow bandwidth spectral combs, that can be developed to determine the refractive change as low as 10-5 using its cut-off cladding resonance mode. Such high performance of response for the refractive index induces a rapid detection of hydrogen after a proper thickness of palladium was deposited on the device. An average response time of hydrogen of 4 min with a low limit of detection of 348 ppm was achieved. It is demonstrated that these narrow bandwidth fiber-optic resonance combs can be used for gas detection after being combined with functional materials.

2.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500908

RESUMO

Various antireflective structures and methods are proposed to solve the optical loss of Si-based absorber devices. Dual-scale structures have received more concern from researchers in recent years. In this study, the finite difference time domain (FDTD) method is employed to investigate deeply the dependence of optical response on the geometric shape and size of structures. The micron cone shows lower reflectivity than other micron structures. Additionally, the lowest reflectivity region moves with the increasing height size of the cone structure. We proposed creatively a nanoripple-cone structure that maintains low reflectivity properties under varying incident angles whether in the visible region or the near-infrared region. Furthermore, the lower reflectivity is obtained with increasing micron cone and decreasing nanoripple. Finally, the dual-scale nanoripple-cone is fabricated directly and cost-effectively by a femtosecond laser instead of a two-step texture-on-texture way. The measured result shows that the high absorption above 98% extends to the mid-infrared region. This study provides directions for the fabrication of wideband Si-based absorber devices to reduce reflectivity, which exhibits a wide application potential and promotes the evolution of multi-laser processing.

3.
Adv Sci (Weinh) ; 9(8): e2104708, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038240

RESUMO

Oxygen sensor is an important technique in various applications including industrial process control, medical equipment, biological fabrication, etc. The reported optical fiber-based configurations so far, using gas-sensitive coating do not meet the stringent performance targets, such as fast response time and low limit of detection (LOD). Tin-based halide perovskites are sensitive to oxygen with potential use for sensor applications. Here, the halide perovskite-based oxygen optical fiber sensor by combining phenylethylammonium tin iodide (PEA2 SnI4 ) and tilted fiber Bragg grating (TFBG) is demonstrated. The PEA2 SnI4 -based oxygen optical fiber sensor is reversible at room temperature with a response time of about 10 s, and the experimental LOD approaches to an extremely low oxygen concentration of about 50 ppm. The as-fabricated oxygen sensor shows a relative response change of 0.6 dB for an oxygen concentration increase from 50 ppm to 5% with good gas selection against NO2 , CO, CO2 , H2 . This work extends the sensor applications of halide perovskites, providing a novel technique for rapid and repeatable oxygen gas detection at a low level.

4.
Opt Express ; 28(13): 19740-19749, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672244

RESUMO

Environmental monitoring and potable water control are key applications where optical fiber sensing solutions can outperform other technologies. In this work, we report a highly sensitive plasmonic fiber-optic probe that has been developed to determine the concentration of cadmium ions (Cd2+) in solution. This original sensor was fabricated by immobilizing the Acinetobacter sp. around gold-coated tilted fiber Bragg gratings (TFBGs). To this aim, the immobilization conditions of bacteria on the gold-coated optical fiber surface were first experimentally determined. Then, the coated sensors were tested in vitro. The relative intensity of the sensor response experienced a change of 1.1 dB for a Cd2+ concentration increase from 0.1 to 1000 ppb. According to our test procedure, we estimate the experimental limit of detection to be close to 1 ppb. Cadmium ions strongly bind to the sensing surface, so the sensor exhibits a much higher sensitivity to Cd2+ than to other heavy metal ions such as Pb2+, Zn2+ and CrO42- found in contaminated water, which ensures a good selectivity.


Assuntos
Acinetobacter/química , Cádmio/análise , Cupriavidus/química , Tecnologia de Fibra Óptica/instrumentação , Pseudomonas/química , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Íons , Ressonância de Plasmônio de Superfície/métodos
5.
Opt Lett ; 44(18): 4483-4486, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517912

RESUMO

Surface plasmon resonance excitation with tilted fiber Bragg gratings has been typically studied using gold films to target biochemical sensing applications. However, surface plasmons can be excited on other metal coatings as well. In this work, plasmonic optical fiber grating platforms are developed using palladium films. Since the optical properties of this metal differ from the ones of gold, simulations are carried out to define the optimal thickness. Due to the phase transition of palladium in the presence of hydrogen, intensity changes in the optical transmission of the devices are produced. It is demonstrated that these platforms can be used for hydrogen detection at concentrations way below the lower explosive limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...