Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1178-1187, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38437216

RESUMO

Undoubtedly, a deep understanding of PM2.5-induced tumor metastasis at the molecular level can contribute to improving the therapeutic effects of related diseases. However, the underlying molecular mechanism of fine particle exposure through long noncoding RNA (lncRNA) regulation in autophagy and, ultimately, lung cancer (LC) metastasis remains elusive; on the other hand, the related monitoring sensor platform used to investigate autophagy and cell migration is lacking. Herein, this study performed an air-liquid interface microfluidic monitoring sensor (AIMMS) platform to analyze human bronchial epithelial cells after PM2.5 stimulation. The multiomics analysis [RNA sequencing (RNA-seq) on lncRNA and mRNA expressions separately] showed that MALAT1 was highly expressed in the PM2.5 treatment group. Furthermore, RNA-seq analysis demonstrated that autophagy-related pathways were activated. Notably, the main mRNAs associated with autophagy regulation, including ATG4D, ATG12, ATG7, and ATG3, were upregulated. Inhibition or downregulation of MALAT1 inhibited autophagy via the ATG4D/ATG12/ATG7/ATG3 pathway after PM2.5 exposure and ultimately suppressed LC metastasis. Thus, based on the AIMMS platform, we found that MALAT1 might become a promising therapeutic target. Furthermore, this low-cost AIMMS system as a fluorescence sensor integrated with the cell-monitor module could be employed to study LC migration after PM2.5 exposure. With the fluorescence cell-monitoring module, the platform could be used to observe the migration of LC cells and construct the tumor metastasis model. In the future, several fluorescence probes, including nanoprobes, could be used in the AIMMS platform to investigate many other biological processes, especially cell interaction and migration, in the fields of toxicology and pharmacology.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Microfluídica , Neoplasias Pulmonares/genética , Material Particulado/toxicidade , Autofagia
2.
Small ; 19(48): e2304032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37528704

RESUMO

Immunogenic cell death (ICD) can activate the body's immune system via dead cell antigens to achieve immunotherapy. Currently, small molecule drugs have been used for ICD treatment in clinical, however, how to precisely control the induced ICD while treating tumors is of great significance for improving therapeutic efficacy. Based on this, a sono/light dual response strategy to tumor therapy and activation of ICD is proposed. A topological synthesis method is used to obtain sulfur-doped bismuth oxide Bi2 O3-x Sx (BS) using BiF3 (BF) as a template through reduction and a morphology-controllable bismuth-based nano-semiconductor with a narrow bandgap is constructed. Under the stimulation of ultrasound, BS can produce reactive oxygen species (ROS) through the sonocatalytic process, which cooperates with BS to consume glutathione and enhance cellular oxidative damage, further inducing ICD. Due to the introduction of sulfur in the reduction reaction, BS can achieve photothermal conversion under light, and combine with ROS to treat tumors. Further, with the assistance of ivermectin (IVM) to form composite (BSM), combined with sono/light dual strategy, ICD is promoted and DCs maturation is accelerated. The proposed ICD-mediated hyperthermia/sonocatalytic therapy strategy will pay the way for synergetic enhancement of tumor treatment efficacy and provide a feasible idea for controllable induction of ICD.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Bismuto , Morte Celular Imunogênica , Espécies Reativas de Oxigênio , Imunoterapia , Neoplasias/terapia , Enxofre , Linhagem Celular Tumoral
3.
Cancers (Basel) ; 15(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37297015

RESUMO

Cancer is a grave and persistent illness, with the rates of both its occurrence and death toll increasing at an alarming pace. N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic organisms, is catalyzed by methyltransferases and has a significant impact on various aspects of cancer progression. WT1-associated protein (WTAP) is a crucial component of the m6A methyltransferase complex, catalyzing m6A methylation on RNA. It has been demonstrated to participate in numerous cellular pathophysiological processes, including X chromosome inactivation, cell proliferation, cell cycle regulation, and alternative splicing. A better understanding of the role of WTAP in cancer may render it a reliable factor for early diagnosis and prognosis, as well as a key therapeutic target for cancer treatment. It has been found that WTAP is closely related to tumor cell cycle regulation, metabolic regulation, autophagy, tumor immunity, ferroptosis, epithelial mesenchymal transformation (EMT), and drug resistance. In this review, we will focus on the latest advances in the biological functions of WTAP in cancer, and explore the prospects of its application in clinical diagnosis and therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...