Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174592

RESUMO

To explore the application of a traditional machine learning model in the intelligent management of pigs, in this paper, the influence of PCA pre-treatment on pig face identification with RF is studied. By this testing method, the parameters of two testing schemes, one adopting RF alone and the other adopting RF + PCA, were determined to be 65 and 70, respectively. With individual identification tests carried out on 10 pigs, accuracy, recall, and f1-score were increased by 2.66, 2.76, and 2.81 percentage points, respectively. Except for the slight increase in training time, the test time was reduced to 75% of the old scheme, and the efficiency of the optimized scheme was greatly improved. It indicates that PCA pre-treatment positively improved the efficiency of individual pig identification with RF. Furthermore, it provides experimental support for the mobile terminals and the embedded application of RF classifiers.

2.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176827

RESUMO

Intelligent detection is vital for achieving the intelligent picking operation of daylily, but complex field environments pose challenges due to branch occlusion, overlapping plants, and uneven lighting. To address these challenges, this study selected an intelligent detection model based on YOLOv5s for daylily, the depth and width parameters of the YOLOv5s network were optimized, with Ghost, Transformer, and MobileNetv3 lightweight networks used to optimize the CSPDarknet backbone network of YOLOv5s, continuously improving the model's performance. The experimental results show that the original YOLOv5s model increased mean average precision (mAP) by 49%, 44%, and 24.9% compared to YOLOv4, SSD, and Faster R-CNN models, optimizing the depth and width parameters of the network increased the mAP of the original YOLOv5s model by 7.7%, and the YOLOv5s model with Transformer as the backbone network increased the mAP by 0.2% and the inference speed by 69% compared to the model after network parameter optimization. The optimized YOLOv5s model provided precision, recall rate, mAP, and inference speed of 81.4%, 74.4%, 78.1%, and 93 frames per second (FPS), which can achieve accurate and fast detection of daylily in complex field environments. The research results can provide data and experimental references for developing intelligent picking equipment for daylily.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...