Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991611

RESUMO

Modeling complex spatial and temporal dependencies in multivariate time series data is crucial for traffic forecasting. Graph convolutional networks have proved to be effective in predicting multivariate time series. Although a predefined graph structure can help the model converge to good results quickly, it also limits the further improvement of the model due to its stationary state. In addition, current methods may not converge on some datasets due to the graph structure of these datasets being difficult to learn. Motivated by this, we propose a novel model named Dynamic Correlation Graph Convolutional Network (DCGCN) in this paper. The model can construct adjacency matrices from input data using a correlation coefficient; thus, dynamic correlation graph convolution is used for capturing spatial dependencies. Meanwhile, gated temporal convolution is used for modeling temporal dependencies. Finally, we performed extensive experiments to evaluate the performance of our proposed method against ten existing well-recognized baseline methods using two original and four public datasets.

2.
ACS Appl Mater Interfaces ; 14(24): 27994-28003, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695375

RESUMO

Although organic cathode materials with sustainability and structural designability have great potential for rechargeable lithium batteries, the dissolution issue presents a huge challenge to meet the demands of cycling stability and energy density simultaneously. Herein, we have designed and successfully synthesized two novel small-molecule organic cathode materials (SMOCMs) by the same innovative route, namely 7,14-diazabenzo[a]tetracene-5,6,8,13-tetraone (DABTTO) and 7,9,16,18-tetraazadibenzo[a,l]pentacene-5,6,8,14,15,17-hexaone (TADBPHO). The integrated p-quinone, o-quinone, and pyrazine groups provide these SMOCMs with attractive theoretical capacities of 473 and 568 mAh g-1 based on 6- and 10-electron reactions, respectively, which were almost fully utilized within 0.8-3.8 V vs Li+/Li. The extended aromatic nucleus of TADBPHO makes it much less soluble than DABTTO and thus able to achieve the highest level of cycling stability (66% @ 500th cycle) for SMOCMs in addition to the exceptional energy density (364 mAh g-1 × 2.56 V = 932 Wh kg-1) within 1.5-3.8 V. In addition to the excellent electrochemical performance, the redox reaction and capacity fading mechanisms have been also investigated in detail. The novel approach to construct extended π-conjugated molecules with o-quinone groups is enlightening for the development of high-energy and stable OCMs for future efficient and sustainable energy storage devices.

3.
ACS Appl Mater Interfaces ; 14(22): 25566-25575, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611969

RESUMO

Organic cathode materials (OCMs) for rechargeable Li and Na batteries show great advantages in resource sustainability and huge potential in electrochemical performance but suffer from dissolution problems and costly synthesis. Herein, for the first time, we investigated the copolymer of benzoquinone (BQ) and pyrrole (Py), namely, poly(benzoquinone-pyrrole) (PBQPy), as an OCM for Li batteries. The low-cost raw materials and solvent-free synthesis provide PBQPy much brighter prospects in large-scale production compared to other carbonyl-based polymer cathode materials. Nevertheless, PBQPy showed one of the best electrochemical performances among all OCMs, including excellent energy density (2.32 V × 255 mAh g-1 = 592 Wh kg-1), rate capability (79%@2000 mA g-1), and cycling stability (81%@1000th cycle). By introducing poly(benzoquinone-methyl pyrrole) for comparison, as well as employing density functional theory calculations and various characterizations for in-depth understanding, the synthesis mechanism, polymer structure, electrochemical behavior, and redox mechanism were clearly clarified. It is believed that this work will encourage more efforts to develop cost-effective OCMs toward practical organic batteries.

4.
ACS Appl Mater Interfaces ; 13(31): 37289-37298, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339183

RESUMO

In spite of the recent progress made in organic electrode materials, high-performance candidates are still lacking, especially when taking affordability into account. Herein, we report a novel polymeric lithium salt, namely dilithium salt of poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) (Li2PDBM), which can be easily synthesized by phenol-formaldehyde condensation, followed by lithiation in LiOH solution to eliminate the negative effect of phenol groups in PDBM. Benefiting from a high theoretical capacity (327 mA h g-1), structure stability, insolubility, and redox reversibility, Li2PDBM exhibits superior electrochemical performance as a cathode for rechargeable lithium batteries, including a high reversible capacity (256 mA h g-1), a high rate capability (79% @ 2000 mA g-1), and a high cycling stability (77% @ 2000th cycle). Besides the cost-effective electrode material synthesis approach, this work also provides an important mechanistic understanding of the structure-performance relationship of carbonyl-based electrode materials, especially those with -OH or -OM (M = Li, Na, and K) substituents.

5.
ChemSusChem ; 14(15): 3174-3181, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34101379

RESUMO

p-Type electroactive polymers are promising cathodes for dual-ion batteries but cost-effective candidates are still lacking. In this study, the p-type polymer polyphenothiazine (PPTZ) is synthesized by a facile one-step oxidation polymerization from the low-cost phenothiazine (PTZ) monomer. As a cathode for rechargeable lithium batteries, PPTZ shows superior electrochemical performance to previously reported PTZ-based polymers with complicated structures and syntheses. For example, PPTZ has a high reversible capacity of 157 mAh g-1 within 2.5-4.3 V vs. Li+ /Li with an average discharge voltage of 3.5 V, and a high capacity retention of 77 % after 500 cycles. The highly reversible one-electron redox mechanism of PPTZ is also investigated in detail by electrochemical testing, ex situ FT-IR and X-ray photoelectron spectroscopy, and DFT calculations. PPTZ has the potential to serve as an attractive p-type cathode material for practical applications and the facile synthesis may be also extended to other polymer cathodes based on N-heteroaromatic units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...