Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 249, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020371

RESUMO

BACKGROUND: Microtubule polymerization is usually considered as the upstream of apoptotic cell death induced by taxanes, but recently published studies provide more insights into the mechanisms responsible for the antineoplastic effect of taxanes. In this study, we figure out the role of the stress-related PERK/eIF2α axis in tumor cell death upon taxane treatment along with paclitaxel resistance. METHODS: Utilizing immunoblot assay, the activation status of PERK-eIF2α signaling was detected in a panel of cancer cell lines after the treatment of taxanes. The causal role of PERK-eIF2α signaling in the cancer cell apoptosis induced by taxanes was examined via pharmacological and genetic inhibitions of PERK. The relationship between microtubule polymerization and PERK-eIF2α activation was explored by immunofluorescent and immunoblotting assays. Eventaually, the combined therapeutic effect of paclitaxel (PTX) and CCT020312, a PERK agonist, was investigated in PTX-resistant breast cancer cells in vitro and in vivo. RESULTS: PERK-eIF2α axis was dramatically activated by taxanes in several cancer cell types. Pharmacological or genetic inhibition of PERK efficiently impaired taxane-induced apoptotic cell death, independent of the cellular microtubule polymerization status. Moreover, PTX was able to activate the PERK/eIF2α axis in a very low concentration without triggering microtubule polymerization. In PTX-resistant breast cancer cells, the PERK/eIF2α axis was attenuated in comparison with the PTX-sensitive counterparts. Reactivation of the PERK/eIF2α axis in the PTX-resistant breast cancer cells with PERK agonist sensitized them to PTX in vitro. Combination treatment of the xenografted PTX-resistant breast tumors with PERK agonist and PTX validated the synergic effect of PTX and PERK activation in vivo. CONCLUSION: Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to initiate cancer cell apoptosis, which is independent of the well-known microtubule polymerization-dependent manner. Simultaneous activation of PERK-eIF2α signaling would be a promising therapeutic strategy to overcome PTX resistance in breast cancer or other cancers.

2.
PeerJ ; 11: e15923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663286

RESUMO

Background: Storage of potato tubers is an essential stage of the supply chain, from farm to consumer, to efficiently match supply and demand. However, the quality and yield of potatoes are influenced by physiological changes during storage. Methods: This study tested the physiological and biochemical indices in three potato varieties (YunSu 108, YunSu 304 and YunSu 306) during their dormancy periods. Results: Three potato varieties with different dormancy periods were used to follow changes in starch, protein and several enzymes during storage. The starch and sugar content of the long-dormant variety (YunSu 108, LDV) were stable, whereas those of the short-dormant variety (YunSu 306, SDV) were variable. Starch synthase activity in the three varieties was initially high, then decreased; the starch content of LDV was relatively stable, that of the medium-dormant variety (YunSu 304, MDV) increased with storage time and peaked at sprouting, and that of SDV was low but variable. The sucrose synthase activity of LDV was significantly higher (p < 0.05) than MDV and SDV in the middle storage period. Two spikes were observed in the invertase activity of SDV, whereas those of MDV and LDV were stable. The reducing sugar content of LDV increased significantly before sprouting, that of MDV slowly decreased and that of SDV dropped sharply. During the whole storage period, pectinase activity in LDV did not change significantly, whereas pectinase in MDV and SDV decreased. The cellulase and protein contents initially increased and then decreased in LDV, and steadily decreased in MDV and SDV. Conclusion: The metabolic indices related to starch and sugar in the LDV were relatively stable during storage, whereas those of the SDV varied greatly. SDV showed increased sucrose, reducing sugars and cellulose; LDV PCA plots clustered in the positive quadrant of PC1 and the negative quadrant of PC2, with increased protein, sucrose synthase and starch; MDV had increased soluble starch synthase.


Assuntos
Solanum tuberosum , Sintase do Amido , Poligalacturonase , Amido , Sacarose
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047679

RESUMO

As key regulators of the Jasmonates (JAs) signal transduction pathway, JAZ protein, and MYC transcription factors are imperative for plant response to external environmental changes, growth, and development. In this study, 18 StJAZs and 12 StMYCs were identified in potatoes. Their chromosomal position, phylogenetic development, gene structure, and promoter cis-acting parts of the StJAZ genes were analyzed. In addition, Protein-Protein Interaction (PPI) network analysis of StJAZ and StMYC gene families and yeast two-hybrid assay demonstrated that five StMYCs can interact with 16 StJAZs, which provides new insights into the operation mechanism of StJAZs and StMYCs in JA signal response. Moreover, we explored the expression profiles of StJAZs and StMYCs genes in different tissues and during abiotic stresses by RNA-seq data. Based on the PPI network and transcriptome data, the genes StJAZ11, StJAZ16, and StMYC6 were chosen for further qRT-PCR study under salt or mannitol treatment. Under mannitol-induced drought or salinity treatment, the expression patterns of StMYC6, StJAZ11, and StJAZ16 were different, indicating that the JAZ protein and MYC transcription factor may be engaged in the response of potatoes to abiotic stress, which opened up a new research direction for the genetic improvement of potatoes in response to environmental stress.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , RNA-Seq , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Autophagy ; 18(8): 1822-1840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34870550

RESUMO

Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer.Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/ß-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Proteína 12 Relacionada à Autofagia , Autofagia , Neoplasias da Mama , Classe III de Fosfatidilinositol 3-Quinases , Autofagia/fisiologia , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Recidiva Local de Neoplasia , Proteínas
5.
Neoplasma ; 68(4): 832-841, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34348467

RESUMO

Phosphatase of regenerating liver-3 (PRL-3) is recognized as a novel independent crucial driver for AML progression. Thus, the specific inhibitor of PRL-3 would be a potential therapeutic agent to AML in clinics, but there are not enough preclinical applications reported yet. Here we evaluated the cytotoxicity of PRL-3 inhibitor, BR-1, against AML cells ML-1 and MOLM-13. Meanwhile, the effect of BR-1 on the biological characteristics of AML cells and the underlying mechanism was investigated along with the combination of BR-1 and sorafenib on the AML cell viability. Our results show that BR-1 promotes apoptosis by inactivation of the JAK/STAT5 and PI3K/AKT pathways, while inhibits cell proliferation through arresting cell cycle in the S phase. In addition, a combination of BR-1 with sorafenib can further improve the therapeutic effect on AML. Thus, our results demonstrated that BR-1 would be a novel and potent therapeutic agent to AML, and its combination with other anti-AML drugs would be a promising strategy for AML therapy.


Assuntos
Leucemia Mieloide Aguda , Fosfatidilinositol 3-Quinases , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Fígado , Sorafenibe
6.
Onco Targets Ther ; 12: 1965-1977, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936716

RESUMO

BACKGROUND: Recently, the biggest challenge in the treatment of breast cancer is the metastasis of breast cancer cells. Multiple myeloma SET protein (MMSET), a histone lysine methyltransferase, overexpressed in various human cancers, was reported to be associated with carcinogenesis of human cancers. METHODS: Expression of MMSET in breast cancer cell lines and tissues was quantified by real-time PCR and Western blotting. Immunohistochemistry was employed to analyze MMSET expression in 163 clinicopathologically characterized breast cancer cases. Cell functional assays such as MTT assay, colony formation, BrdU assay, flow cytometry, wound healing, Transwell assay, and 3D culture were used to investigate the effect of MMSET in the development and metastasis of human breast cancer. Effects of MMSET on Wnt/ß-catenin signaling pathway were further studied by using Western blotting analysis. RESULTS: Our results showed that MMSET expression was markedly overexpressed in breast cancer cells and clinical specimens and was significantly correlated with patients' clinicopatho-logic characteristics and prognosis. Moreover, silencing endogenous MMSET significantly inhibited the proliferation, migration, and metastasis of breast cancer cells through inhibiting the Wnt/ß-catenin pathway. CONCLUSION: This study found that the downregulated expression of MMSET impaired proliferation and metastasis of human breast cancer through inhibiting Wnt/ß-catenin signaling pathway. Notably, our results indicated that MMSET could be a useful biomarker for the prognosis of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...