Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167325, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748614

RESUMO

Forest vegetation is essential in sequestering carbon dioxide (CO2) from the atmosphere and mediating global warming. The carbon (C) sink potential of forest vegetation in different provinces is vital for policymakers to develop C-neutral technical routes and regional priorities in China; however, the mechanism remains unclear. In this study, we compiled the public data on forest vegetation biomass or storage along forest succession series between 2003 and 2022 and obtained the spatial variation of the maximum C storage(BCmax) of forest vegetation using classic logistic equation and nonlinear fitting. Furthermore, the C sink potential (∆Cpot) of the Chinese forest vegetation was calculated based on the differences between the BCmax and intensive field-investigated data in the 2010s. The results showed that the BCmax in the Chinese forest vegetation was approximately 19.03 Pg. The BCmax in southwest and northeast China were higher than those in other regions. The ∆Cpot was estimated as 8.83 Pg. Moreover, 1 km × 1 km spatial raster data for ∆Cpot were produced using the spatial raster calculation. Similarly, the per capita ∆Cpot of regions with low economic development (southwest, central, and southern Chinese provinces) were five to ten times higher than those of regions with a higher economic level. The ∆Cpot correlated negatively with gross domestic product (GDP)across all Chinese provinces. Our findings provide new insights into the ∆Cpot of the Chinese forest vegetation under natural restoration and emphasize that some differences in financial and political support among different provinces facilitate achieving a large ∆Cpot for C neutrality.


Assuntos
Sequestro de Carbono , Florestas , Biomassa , Dióxido de Carbono , China
2.
Sci Total Environ ; 884: 163792, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127160

RESUMO

Afforestation and reforestation (A&R) are nature-based and cost-effective solutions for enhancing terrestrial carbon sinks and facilitating faster carbon neutrality. However, the lack of hierarchical spatial-temporal maps for the carbon sequestration rate (CSR) from A&R at the national scale impedes the scientific implementation of forest management planning to a large extent. Here, we assessed the spatial-temporal CSR per area for A&R at the provincial, prefectural, and county levels in China using a forest carbon sequestration model under three climate scenarios. Results showed that the CSR of vegetation (CSRVeg), soil (CSRSoil), and the ecosystem (CSREco) significantly varied across space and time. In China, the CSRVeg, CSRSoil, and CSREco were primarily regulated by the spatial variations in temperature and precipitation. Additionally, CSRVeg was found to be positively influenced by precipitation and temperature, whereas temperature had a negative influence on CSRSoil. Therefore, the differences between the CSRVeg and CSRSoil should be emphasized in the future. These information on the spatiotemporal variation of CSR of A&R (vegetation, soil, and ecosystem) on unit area basis and at levels of province, prefecture, and county in China, can be used as a comparable protocol to estimate the carbon sinks of A&R at different scales. Overall, these hierarchical spatiotemporal maps for CSR on A&R may help to identify priority areas of forest management planning and carbon trade policy to achieve faster carbon neutrality for China in the future.


Assuntos
Sequestro de Carbono , Ecossistema , Carbono/análise , Florestas , China , Solo
3.
Sci Bull (Beijing) ; 67(8): 836-843, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546236

RESUMO

Forestation is important for sequestering atmospheric carbon, and it is a cost-effective and nature-based solution (NBS) for mitigating global climate change. Here, under the assumption of forestation in the potential plantable lands, we used the forest carbon sequestration (FCS) model and field survey involving 3365 forest plots to assess the carbon sequestration rate (CSR) of Chinese existing and new forestation forests from 2010 to 2060 under three forestation and three climate scenarios. Without considering the influence of extreme events and human disturbance, the estimated average CSR in Chinese forests was 0.358 ± 0.016 Pg C a-1, with partitioning to biomass (0.211 ± 0.016 Pg C a-1) and soil (0.147 ± 0.005 Pg C a-1), respectively. The existing forests account for approximately 93.5% of the CSR, which will peak near 2035, and decreasing trend was present overall after 2035. After 2035, effective tending management is required to maintain the high CSR level, such as selective cutting, thinning, and approximate disturbance. However, new forestation from 2015 in the potential plantable lands would play a minimal role in additional CSR increases. In China, the CSR is generally higher in the Northeast, Southwest, and Central-South, and lower in the Northwest. Considering the potential losses through deforestation and logging, it is realistically estimated that CSR in Chinese forests would remain in the range of 0.161-0.358 Pg C a-1 from 2010 to 2060. Overall, forests have the potential to offset 14.1% of the national anthropogenic carbon emissions in China over the period of 2010-2060, significantly contributing to the carbon neutrality target of 2060 with the implementation of effective management strategies for existing forests and expansion of forestation.


Assuntos
Sequestro de Carbono , Florestas , Biomassa , Carbono/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...